题目描述 
给你二叉树的根节点 root 和一个整数目标和 targetSum ,找出所有 从根节点到叶子节点  路径总和等于给定目标和的路径。
叶子节点  是指没有子节点的节点。
 
示例 1: 
输入: root = [5,4,8,11,null,13,4,7,2,null,null,5,1], targetSum = 22
输出: [[5,4,11,2],[5,8,4,5]]
 
示例 2: 
输入: root = [1,2,3], targetSum = 5
输出: []
 
示例 3: 
输入: root = [1,2], targetSum = 0
输出: []
 
 
提示: 
    树中节点总数在范围 [0, 5000] 内 
    -1000 <= Node.val <= 1000 
    -1000 <= targetSum <= 1000 
 
注意:本题与主站 113 题相同:https://leetcode.cn/problems/path-sum-ii/ 
解法 
方法一:递归 
从根节点开始,递归遍历每个节点,每次递归时,将当前节点值加入到路径中,然后判断当前节点是否为叶子节点,如果是叶子节点并且路径和等于目标值,则将该路径加入到结果中。如果当前节点不是叶子节点,则递归遍历其左右子节点。递归遍历时,需要将当前节点从路径中移除,以确保返回父节点时路径刚好是从根节点到父节点。
时间复杂度 \(O(n^2)\) ,空间复杂度 \(O(n)\) 。其中 \(n\)  是二叉树的节点数。
Python3 Java C++ Go TypeScript Rust JavaScript C# Swift 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 # Definition for a binary tree node. 
# class TreeNode: 
#     def __init__(self, val=0, left=None, right=None): 
#         self.val = val 
#         self.left = left 
#         self.right = right 
class   Solution : 
    def   pathSum ( self ,  root :  TreeNode ,  target :  int )  ->  List [ List [ int ]]: 
        def   dfs ( root ,  s ): 
            if  root  is  None : 
                return 
            t . append ( root . val ) 
            s  -=  root . val 
            if  root . left  is  None  and  root . right  is  None  and  s  ==  0 : 
                ans . append ( t [:]) 
            dfs ( root . left ,  s ) 
            dfs ( root . right ,  s ) 
            t . pop () 
        ans  =  [] 
        t  =  [] 
        dfs ( root ,  target ) 
        return  ans 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 /** 
 * Definition for a binary tree node. 
 * public class TreeNode { 
 *     int val; 
 *     TreeNode left; 
 *     TreeNode right; 
 *     TreeNode() {} 
 *     TreeNode(int val) { this.val = val; } 
 *     TreeNode(int val, TreeNode left, TreeNode right) { 
 *         this.val = val; 
 *         this.left = left; 
 *         this.right = right; 
 *     } 
 * } 
 */ 
class  Solution   { 
     private   List < Integer >   t   =   new   ArrayList <> (); 
     private   List < List < Integer >>   ans   =   new   ArrayList <> (); 
     public   List < List < Integer >>   pathSum ( TreeNode   root ,   int   target )   { 
         dfs ( root ,   target ); 
         return   ans ; 
     } 
     private   void   dfs ( TreeNode   root ,   int   s )   { 
         if   ( root   ==   null )   { 
             return ; 
         } 
         t . add ( root . val ); 
         s   -=   root . val ; 
         if   ( root . left   ==   null   &&   root . right   ==   null   &&   s   ==   0 )   { 
             ans . add ( new   ArrayList <> ( t )); 
         } 
         dfs ( root . left ,   s ); 
         dfs ( root . right ,   s ); 
         t . remove ( t . size ()   -   1 ); 
     } 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 /** 
 * Definition for a binary tree node. 
 * struct TreeNode { 
 *     int val; 
 *     TreeNode *left; 
 *     TreeNode *right; 
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} 
 * }; 
 */ 
class   Solution   { 
public : 
     vector < vector < int >>   pathSum ( TreeNode *   root ,   int   target )   { 
         vector < vector < int >>   ans ; 
         vector < int >   t ; 
         function < void ( TreeNode   *   root ,   int   s ) >   dfs   =   [ & ]( TreeNode *   root ,   int   s )   { 
             if   ( ! root )   { 
                 return ; 
             } 
             t . push_back ( root -> val ); 
             s   -=   root -> val ; 
             if   ( ! root -> left   &&   ! root -> right   &&   ! s )   { 
                 ans . push_back ( t ); 
             } 
             dfs ( root -> left ,   s ); 
             dfs ( root -> right ,   s ); 
             t . pop_back (); 
         }; 
         dfs ( root ,   target ); 
         return   ans ; 
     } 
}; 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 /** 
 * Definition for a binary tree node. 
 * type TreeNode struct { 
 *     Val int 
 *     Left *TreeNode 
 *     Right *TreeNode 
 * } 
 */ 
func   pathSum ( root   * TreeNode ,   target   int )   ( ans   [][] int )   { 
     t   :=   [] int {} 
     var   dfs   func ( * TreeNode ,   int ) 
     dfs   =   func ( root   * TreeNode ,   s   int )   { 
         if   root   ==   nil   { 
             return 
         } 
         t   =   append ( t ,   root . Val ) 
         s   -=   root . Val 
         if   root . Left   ==   nil   &&   root . Right   ==   nil   &&   s   ==   0   { 
             ans   =   append ( ans ,   slices . Clone ( t )) 
         } 
         dfs ( root . Left ,   s ) 
         dfs ( root . Right ,   s ) 
         t   =   t [: len ( t ) - 1 ] 
     } 
     dfs ( root ,   target ) 
     return 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 /** 
 * Definition for a binary tree node. 
 * class TreeNode { 
 *     val: number 
 *     left: TreeNode | null 
 *     right: TreeNode | null 
 *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) { 
 *         this.val = (val===undefined ? 0 : val) 
 *         this.left = (left===undefined ? null : left) 
 *         this.right = (right===undefined ? null : right) 
 *     } 
 * } 
 */ 
function   pathSum ( root :   TreeNode   |   null ,   target :   number ) :   number [][]   { 
     const   ans :   number [][]   =   []; 
     const   t :   number []   =   []; 
     const   dfs   =   ( root :   TreeNode   |   null ,   s :   number ) :   void   =>   { 
         if   ( ! root )   { 
             return ; 
         } 
         const   {   val ,   left ,   right   }   =   root ; 
         t . push ( val ); 
         s   -=   val ; 
         if   ( ! left   &&   ! right   &&   s   ===   0 )   { 
             ans . push ([... t ]); 
         } 
         dfs ( left ,   s ); 
         dfs ( right ,   s ); 
         t . pop (); 
     }; 
     dfs ( root ,   target ); 
     return   ans ; 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 // Definition for a binary tree node. 
// #[derive(Debug, PartialEq, Eq)] 
// pub struct TreeNode { 
//   pub val: i32, 
//   pub left: Option<Rc<RefCell<TreeNode>>>, 
//   pub right: Option<Rc<RefCell<TreeNode>>>, 
// } 
// 
// impl TreeNode { 
//   #[inline] 
//   pub fn new(val: i32) -> Self { 
//     TreeNode { 
//       val, 
//       left: None, 
//       right: None 
//     } 
//   } 
// } 
use   std :: cell :: RefCell ; 
use   std :: rc :: Rc ; 
impl   Solution   { 
     fn   dfs ( 
         root :   & Option < Rc < RefCell < TreeNode >>> , 
         mut   target :   i32 , 
         t :   & mut   Vec < i32 > , 
         ans :   & mut   Vec < Vec < i32 >> , 
     )   { 
         if   let   Some ( node )   =   root . as_ref ()   { 
             let   node   =   node . borrow (); 
             t . push ( node . val ); 
             target   -=   node . val ; 
             if   node . left . is_none ()   &&   node . right . is_none ()   &&   target   ==   0   { 
                 ans . push ( t . clone ()); 
             } 
             Self :: dfs ( & node . left ,   target ,   t ,   ans ); 
             Self :: dfs ( & node . right ,   target ,   t ,   ans ); 
             t . pop (); 
         } 
     } 
     pub   fn   path_sum ( root :   Option < Rc < RefCell < TreeNode >>> ,   target :   i32 )   ->   Vec < Vec < i32 >>   { 
         let   mut   ans   =   vec! []; 
         Self :: dfs ( & root ,   target ,   & mut   vec! [],   & mut   ans ); 
         ans 
     } 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 /** 
 * Definition for a binary tree node. 
 * function TreeNode(val, left, right) { 
 *     this.val = (val===undefined ? 0 : val) 
 *     this.left = (left===undefined ? null : left) 
 *     this.right = (right===undefined ? null : right) 
 * } 
 */ 
/** 
 * @param {TreeNode} root 
 * @param {number} target 
 * @return {number[][]} 
 */ 
var   pathSum   =   function   ( root ,   target )   { 
     const   ans   =   []; 
     const   t   =   []; 
     const   dfs   =   ( root ,   s )   =>   { 
         if   ( ! root )   { 
             return ; 
         } 
         const   {   val ,   left ,   right   }   =   root ; 
         t . push ( val ); 
         s   -=   val ; 
         if   ( ! left   &&   ! right   &&   ! s )   { 
             ans . push ([... t ]); 
         } 
         dfs ( left ,   s ); 
         dfs ( right ,   s ); 
         t . pop (); 
     }; 
     dfs ( root ,   target ); 
     return   ans ; 
}; 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 /** 
 * Definition for a binary tree node. 
 * public class TreeNode { 
 *     public int val; 
 *     public TreeNode left; 
 *     public TreeNode right; 
 *     public TreeNode(int val=0, TreeNode left=null, TreeNode right=null) { 
 *         this.val = val; 
 *         this.left = left; 
 *         this.right = right; 
 *     } 
 * } 
 */ 
public   class   Solution   { 
     private   List < IList < int >>   ans   =   new   List < IList < int >> (); 
     private   List < int >   t   =   new   List < int > (); 
     public   IList < IList < int >>   PathSum ( TreeNode   root ,   int   target )   { 
         dfs ( root ,   target ); 
         return   ans ; 
     } 
     private   void   dfs ( TreeNode   root ,   int   s )   { 
         if   ( root   ==   null )   { 
             return ; 
         } 
         t . Add ( root . val ); 
         s   -=   root . val ; 
         if   ( root . left   ==   null   &&   root . right   ==   null   &&   s   ==   0 )   { 
             ans . Add ( new   List < int > ( t )); 
         } 
         dfs ( root . left ,   s ); 
         dfs ( root . right ,   s ); 
         t . RemoveAt ( t . Count   -   1 ); 
     } 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 /** 
 * Definition for a binary tree node. 
 * public class TreeNode { 
 *     public var val: Int 
 *     public var left: TreeNode? 
 *     public var right: TreeNode? 
 *     public init() { self.val = 0; self.left = nil; self.right = nil; } 
 *     public init(_ val: Int) { self.val = val; self.left = nil; self.right = nil; } 
 *     public init(_ val: Int, _ left: TreeNode?, _ right: TreeNode?) { 
 *         self.val = val 
 *         self.left = left 
 *         self.right = right 
 *     } 
 * } 
 */ 
class   Solution   { 
     private   var   t   =   [ Int ]() 
     private   var   ans   =   [[ Int ]]() 
     func   pathSum ( _   root :   TreeNode ?,   _   target :   Int )   ->   [[ Int ]]   { 
         dfs ( root ,   target ) 
         return   ans 
     } 
     private   func   dfs ( _   root :   TreeNode ?,   _   s :   Int )   { 
         guard   let   root   =   root   else   { 
             return 
         } 
         t . append ( root . val ) 
         let   remainingSum   =   s   -   root . val 
         if   root . left   ==   nil   &&   root . right   ==   nil   &&   remainingSum   ==   0   { 
             ans . append ( Array ( t )) 
         } 
         dfs ( root . left ,   remainingSum ) 
         dfs ( root . right ,   remainingSum ) 
         t . removeLast () 
     } 
}