题目描述
请实现一个函数按照之字形顺序打印二叉树,即第一行按照从左到右的顺序打印,第二层按照从右到左的顺序打印,第三行再按照从左到右的顺序打印,其他行以此类推。
例如:
给定二叉树: [3,9,20,null,null,15,7]
,
3
/ \
9 20
/ \
15 7
返回其层次遍历结果:
[
[3],
[20,9],
[15,7]
]
提示:
节点总数 <= 1000
解法
方法一:BFS
为了实现锯齿形层序遍历,我们每次将当前层的节点添加到结果数组之前,先判断一下当前结果数组的长度,如果是奇数,就将当前层的节点反转一下。之后把当前层的节点添加到结果数组中即可。
时间复杂度 \(O(n)\) ,空间复杂度 \(O(n)\) 。其中 \(n\) 为二叉树的节点数。
Python3 Java C++ Go TypeScript Rust JavaScript C#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 # Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution :
def levelOrder ( self , root : TreeNode ) -> List [ List [ int ]]:
ans = []
if root is None :
return ans
q = deque ([ root ])
ans = []
while q :
t = []
for _ in range ( len ( q )):
node = q . popleft ()
t . append ( node . val )
if node . left :
q . append ( node . left )
if node . right :
q . append ( node . right )
ans . append ( t [:: - 1 ] if len ( ans ) & 1 else t )
return ans
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37 /**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public List < List < Integer >> levelOrder ( TreeNode root ) {
List < List < Integer >> ans = new ArrayList <> ();
if ( root == null ) {
return ans ;
}
Deque < TreeNode > q = new ArrayDeque <> ();
q . offer ( root );
while ( ! q . isEmpty ()) {
List < Integer > t = new ArrayList <> ();
for ( int n = q . size (); n > 0 ; -- n ) {
TreeNode node = q . poll ();
t . add ( node . val );
if ( node . left != null ) {
q . offer ( node . left );
}
if ( node . right != null ) {
q . offer ( node . right );
}
}
if ( ans . size () % 2 == 1 ) {
Collections . reverse ( t );
}
ans . add ( t );
}
return ans ;
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38 /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public :
vector < vector < int >> levelOrder ( TreeNode * root ) {
vector < vector < int >> ans ;
if ( ! root ) {
return ans ;
}
queue < TreeNode *> q {{ root }};
while ( ! q . empty ()) {
vector < int > t ;
for ( int n = q . size (); n ; -- n ) {
auto node = q . front ();
q . pop ();
t . push_back ( node -> val );
if ( node -> left ) {
q . push ( node -> left );
}
if ( node -> right ) {
q . push ( node -> right );
}
}
if ( ans . size () & 1 ) {
reverse ( t . begin (), t . end ());
}
ans . emplace_back ( t );
}
return ans ;
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35 /**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func levelOrder ( root * TreeNode ) ( ans [][] int ) {
if root == nil {
return
}
q := [] * TreeNode { root }
for len ( q ) > 0 {
t := [] int {}
for n := len ( q ); n > 0 ; n -- {
node := q [ 0 ]
q = q [ 1 :]
t = append ( t , node . Val )
if node . Left != nil {
q = append ( q , node . Left )
}
if node . Right != nil {
q = append ( q , node . Right )
}
}
if len ( ans ) & 1 == 1 {
for i , j := 0 , len ( t ) - 1 ; i < j ; i , j = i + 1 , j - 1 {
t [ i ], t [ j ] = t [ j ], t [ i ]
}
}
ans = append ( ans , t )
}
return
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35 /**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function levelOrder ( root : TreeNode | null ) : number [][] {
const res = [];
if ( root == null ) {
return res ;
}
let isEven = false ;
const queue = [ root ];
while ( queue . length !== 0 ) {
const n = queue . length ;
const vals = new Array ( n );
for ( let i = 0 ; i < n ; i ++ ) {
const { val , left , right } = queue . shift ();
vals [ i ] = val ;
left && queue . push ( left );
right && queue . push ( right );
}
res . push ( isEven ? vals . reverse () : vals );
isEven = ! isEven ;
}
return res ;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53 // Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std :: cell :: RefCell ;
use std :: collections :: VecDeque ;
use std :: rc :: Rc ;
impl Solution {
pub fn level_order ( root : Option < Rc < RefCell < TreeNode >>> ) -> Vec < Vec < i32 >> {
let mut res = Vec :: new ();
if root . is_none () {
return res ;
}
let mut queue = VecDeque :: new ();
queue . push_back ( root );
let mut is_even = false ;
while ! queue . is_empty () {
let n = queue . len ();
let mut vals = Vec :: with_capacity ( n );
for _ in 0 .. n {
let mut node = queue . pop_front (). unwrap ();
let mut node = node . as_mut (). unwrap (). borrow_mut ();
vals . push ( node . val );
if node . left . is_some () {
queue . push_back ( node . left . take ());
}
if node . right . is_some () {
queue . push_back ( node . right . take ());
}
}
if is_even {
vals . reverse ();
}
res . push ( vals );
is_even = ! is_even ;
}
res
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 /**
* Definition for a binary tree node.
* function TreeNode(val) {
* this.val = val;
* this.left = this.right = null;
* }
*/
/**
* @param {TreeNode} root
* @return {number[][]}
*/
var levelOrder = function ( root ) {
const ans = [];
if ( ! root ) {
return ans ;
}
const q = [ root ];
while ( q . length ) {
const t = [];
for ( let n = q . length ; n ; -- n ) {
const { val , left , right } = q . shift ();
t . push ( val );
left && q . push ( left );
right && q . push ( right );
}
if ( ans . length & 1 ) {
t . reverse ();
}
ans . push ( t );
}
return ans ;
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37 /**
* Definition for a binary tree node.
* public class TreeNode {
* public int val;
* public TreeNode left;
* public TreeNode right;
* public TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public IList < IList < int >> LevelOrder ( TreeNode root ) {
var ans = new List < IList < int >> ();
if ( root == null ) {
return ans ;
}
var q = new Queue < TreeNode > ();
q . Enqueue ( root );
while ( q . Count > 0 ) {
var t = new List < int > ();
for ( int n = q . Count ; n > 0 ; -- n ) {
var node = q . Dequeue ();
t . Add ( node . val );
if ( node . left != null ) {
q . Enqueue ( node . left );
}
if ( node . right != null ) {
q . Enqueue ( node . right );
}
}
if ( ans . Count % 2 == 1 ) {
t . Reverse ();
}
ans . Add ( t );
}
return ans ;
}
}