题目描述 
给定一个二叉搜索树,请将它的每个  节点的值替换成树中大于或者等于该  节点值的所有  节点值之和。 
 
提醒一下,二叉搜索树满足下列约束条件:
    节点的左子树仅包含键 小于  节点键的节点。 
    节点的右子树仅包含键 大于  节点键的节点。 
    左右子树也必须是二叉搜索树。 
 
 
示例 1: 
输入: root  =  [4,1,6,0,2,5,7,null,null,null,3,null,null,null,8]
输出: [30,36,21,36,35,26,15,null,null,null,33,null,null,null,8]
 
示例 2: 
输入: root = [0,null,1]
输出: [1,null,1]
 
示例 3: 
输入: root = [1,0,2]
输出: [3,3,2]
 
示例 4: 
输入: root = [3,2,4,1]
输出: [7,9,4,10]
 
 
提示: 
    树中的节点数介于 0 和 104   之间。 
    每个节点的值介于 -104  和 104  之间。 
    树中的所有值 互不相同  。 
    给定的树为二叉搜索树。 
 
 
 注意:
解法 
方法一:递归 
按照“右根左”的顺序,递归遍历二叉搜索树,累加遍历到的所有节点值到 \(s\)  中,然后每次赋值给对应的 node 节点。
时间复杂度 \(O(n)\) ,空间复杂度 \(O(n)\) 。其中 \(n\)  是二叉搜索树的节点数。
Python3 Java C++ Go TypeScript Rust JavaScript Swift 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 # Definition for a binary tree node. 
# class TreeNode: 
#     def __init__(self, val=0, left=None, right=None): 
#         self.val = val 
#         self.left = left 
#         self.right = right 
class   Solution : 
    def   convertBST ( self ,  root :  TreeNode )  ->  TreeNode : 
        def   dfs ( root ): 
            nonlocal  s 
            if  root  is  None : 
                return 
            dfs ( root . right ) 
            s  +=  root . val 
            root . val  =  s 
            dfs ( root . left ) 
        s  =  0 
        dfs ( root ) 
        return  root 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 /** 
 * Definition for a binary tree node. 
 * public class TreeNode { 
 *     int val; 
 *     TreeNode left; 
 *     TreeNode right; 
 *     TreeNode() {} 
 *     TreeNode(int val) { this.val = val; } 
 *     TreeNode(int val, TreeNode left, TreeNode right) { 
 *         this.val = val; 
 *         this.left = left; 
 *         this.right = right; 
 *     } 
 * } 
 */ 
class  Solution   { 
     private   int   s ; 
     public   TreeNode   convertBST ( TreeNode   root )   { 
         dfs ( root ); 
         return   root ; 
     } 
     private   void   dfs ( TreeNode   root )   { 
         if   ( root   ==   null )   { 
             return ; 
         } 
         dfs ( root . right ); 
         s   +=   root . val ; 
         root . val   =   s ; 
         dfs ( root . left ); 
     } 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 /** 
 * Definition for a binary tree node. 
 * struct TreeNode { 
 *     int val; 
 *     TreeNode *left; 
 *     TreeNode *right; 
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} 
 * }; 
 */ 
class   Solution   { 
public : 
     int   s   =   0 ; 
     TreeNode *   convertBST ( TreeNode *   root )   { 
         dfs ( root ); 
         return   root ; 
     } 
     void   dfs ( TreeNode *   root )   { 
         if   ( ! root )   return ; 
         dfs ( root -> right ); 
         s   +=   root -> val ; 
         root -> val   =   s ; 
         dfs ( root -> left ); 
     } 
}; 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 /** 
 * Definition for a binary tree node. 
 * type TreeNode struct { 
 *     Val int 
 *     Left *TreeNode 
 *     Right *TreeNode 
 * } 
 */ 
func   convertBST ( root   * TreeNode )   * TreeNode   { 
     s   :=   0 
     var   dfs   func ( * TreeNode ) 
     dfs   =   func ( root   * TreeNode )   { 
         if   root   ==   nil   { 
             return 
         } 
         dfs ( root . Right ) 
         s   +=   root . Val 
         root . Val   =   s 
         dfs ( root . Left ) 
     } 
     dfs ( root ) 
     return   root 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 /** 
 * Definition for a binary tree node. 
 * class TreeNode { 
 *     val: number 
 *     left: TreeNode | null 
 *     right: TreeNode | null 
 *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) { 
 *         this.val = (val===undefined ? 0 : val) 
 *         this.left = (left===undefined ? null : left) 
 *         this.right = (right===undefined ? null : right) 
 *     } 
 * } 
 */ 
function   convertBST ( root :   TreeNode   |   null ) :   TreeNode   |   null   { 
     let   sum   =   0 ; 
     const   dfs   =   ( root :   TreeNode   |   null )   =>   { 
         if   ( root   ==   null )   { 
             return ; 
         } 
         dfs ( root . right ); 
         root . val   +=   sum ; 
         sum   =   root . val ; 
         dfs ( root . left ); 
     }; 
     dfs ( root ); 
     return   root ; 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 // Definition for a binary tree node. 
// #[derive(Debug, PartialEq, Eq)] 
// pub struct TreeNode { 
//   pub val: i32, 
//   pub left: Option<Rc<RefCell<TreeNode>>>, 
//   pub right: Option<Rc<RefCell<TreeNode>>>, 
// } 
// 
// impl TreeNode { 
//   #[inline] 
//   pub fn new(val: i32) -> Self { 
//     TreeNode { 
//       val, 
//       left: None, 
//       right: None 
//     } 
//   } 
// } 
use   std :: cell :: RefCell ; 
use   std :: rc :: Rc ; 
impl   Solution   { 
     fn   dfs ( root :   & Option < Rc < RefCell < TreeNode >>> ,   sum :   & mut   i32 )   { 
         if   let   Some ( node )   =   root   { 
             Self :: dfs ( & node . borrow (). right ,   sum ); 
             node . borrow_mut (). val   +=   * sum ; 
             * sum   =   node . borrow (). val ; 
             Self :: dfs ( & node . borrow (). left ,   sum ); 
         } 
     } 
     pub   fn   convert_bst ( root :   Option < Rc < RefCell < TreeNode >>> )   ->   Option < Rc < RefCell < TreeNode >>>   { 
         Self :: dfs ( & root ,   & mut   0 ); 
         root 
     } 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 /** 
 * Definition for a binary tree node. 
 * function TreeNode(val, left, right) { 
 *     this.val = (val===undefined ? 0 : val) 
 *     this.left = (left===undefined ? null : left) 
 *     this.right = (right===undefined ? null : right) 
 * } 
 */ 
/** 
 * @param {TreeNode} root 
 * @return {TreeNode} 
 */ 
var   convertBST   =   function   ( root )   { 
     let   s   =   0 ; 
     function   dfs ( root )   { 
         if   ( ! root )   { 
             return ; 
         } 
         dfs ( root . right ); 
         s   +=   root . val ; 
         root . val   =   s ; 
         dfs ( root . left ); 
     } 
     dfs ( root ); 
     return   root ; 
}; 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 /* class TreeNode { 
*     var val: Int 
*     var left: TreeNode? 
*     var right: TreeNode? 
*     init() { 
*         self.val = 0 
*         self.left = nil 
*         self.right = nil 
*     } 
*     init(_ val: Int) { 
*         self.val = val 
*         self.left = nil 
*         self.right = nil 
*     } 
*     init(_ val: Int, _ left: TreeNode?, _ right: TreeNode?) { 
*         self.val = val 
*         self.left = left 
*         self.right = right 
*     } 
* } 
*/ 
class   Solution   { 
     private   var   s   =   0 
     func   convertBST ( _   root :   TreeNode ?)   ->   TreeNode ?   { 
         dfs ( root ) 
         return   root 
     } 
     private   func   dfs ( _   root :   TreeNode ?)   { 
         guard   let   node   =   root   else   { 
             return 
         } 
         dfs ( node . right ) 
         s   +=   node . val 
         node . val   =   s 
         dfs ( node . left ) 
     } 
} 
 
 
 
 
方法二:Morris 遍历 
Morris 遍历无需使用栈,时间复杂度 \(O(n)\) ,空间复杂度为 \(O(1)\) 。核心思想是:
定义 s 表示二叉搜索树节点值累加和。遍历二叉树节点:
若当前节点 root 的右子树为空,将当前节点值添加至 s  中,更新当前节点值为 s,并将当前节点更新为 root.left。 
若当前节点 root 的右子树不为空,找到右子树的最左节点 next(也即是 root 节点在中序遍历下的后继节点):
若后继节点 next 的左子树为空,将后继节点的左子树指向当前节点 root,并将当前节点更新为 root.right。 
若后继节点 next 的左子树不为空,将当前节点值添加 s  中,更新当前节点值为 s,然后将后继节点左子树指向空(即解除 next 与 root 的指向关系),并将当前节点更新为 root.left。 
 
 
循环以上步骤,直至二叉树节点为空,遍历结束。 
最后返回二叉搜索树根节点即可。 
 
Morris 反序中序遍历跟 Morris 中序遍历思路一致,只是将中序遍历的“左根右”变为“右根左”。
 
Python3 Java C++ Go 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 # Definition for a binary tree node. 
# class TreeNode: 
#     def __init__(self, val=0, left=None, right=None): 
#         self.val = val 
#         self.left = left 
#         self.right = right 
class   Solution : 
    def   convertBST ( self ,  root :  TreeNode )  ->  TreeNode : 
        s  =  0 
        node  =  root 
        while  root : 
            if  root . right  is  None : 
                s  +=  root . val 
                root . val  =  s 
                root  =  root . left 
            else : 
                next  =  root . right 
                while  next . left  and  next . left  !=  root : 
                    next  =  next . left 
                if  next . left  is  None : 
                    next . left  =  root 
                    root  =  root . right 
                else : 
                    s  +=  root . val 
                    root . val  =  s 
                    next . left  =  None 
                    root  =  root . left 
        return  node 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 /** 
 * Definition for a binary tree node. 
 * public class TreeNode { 
 *     int val; 
 *     TreeNode left; 
 *     TreeNode right; 
 *     TreeNode() {} 
 *     TreeNode(int val) { this.val = val; } 
 *     TreeNode(int val, TreeNode left, TreeNode right) { 
 *         this.val = val; 
 *         this.left = left; 
 *         this.right = right; 
 *     } 
 * } 
 */ 
class  Solution   { 
     public   TreeNode   convertBST ( TreeNode   root )   { 
         int   s   =   0 ; 
         TreeNode   node   =   root ; 
         while   ( root   !=   null )   { 
             if   ( root . right   ==   null )   { 
                 s   +=   root . val ; 
                 root . val   =   s ; 
                 root   =   root . left ; 
             }   else   { 
                 TreeNode   next   =   root . right ; 
                 while   ( next . left   !=   null   &&   next . left   !=   root )   { 
                     next   =   next . left ; 
                 } 
                 if   ( next . left   ==   null )   { 
                     next . left   =   root ; 
                     root   =   root . right ; 
                 }   else   { 
                     s   +=   root . val ; 
                     root . val   =   s ; 
                     next . left   =   null ; 
                     root   =   root . left ; 
                 } 
             } 
         } 
         return   node ; 
     } 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 /** 
 * Definition for a binary tree node. 
 * struct TreeNode { 
 *     int val; 
 *     TreeNode *left; 
 *     TreeNode *right; 
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} 
 * }; 
 */ 
class   Solution   { 
public : 
     TreeNode *   convertBST ( TreeNode *   root )   { 
         int   s   =   0 ; 
         TreeNode *   node   =   root ; 
         while   ( root )   { 
             if   ( root -> right   ==   nullptr )   { 
                 s   +=   root -> val ; 
                 root -> val   =   s ; 
                 root   =   root -> left ; 
             }   else   { 
                 TreeNode *   next   =   root -> right ; 
                 while   ( next -> left   &&   next -> left   !=   root )   { 
                     next   =   next -> left ; 
                 } 
                 if   ( next -> left   ==   nullptr )   { 
                     next -> left   =   root ; 
                     root   =   root -> right ; 
                 }   else   { 
                     s   +=   root -> val ; 
                     root -> val   =   s ; 
                     next -> left   =   nullptr ; 
                     root   =   root -> left ; 
                 } 
             } 
         } 
         return   node ; 
     } 
}; 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 /** 
 * Definition for a binary tree node. 
 * type TreeNode struct { 
 *     Val int 
 *     Left *TreeNode 
 *     Right *TreeNode 
 * } 
 */ 
func   convertBST ( root   * TreeNode )   * TreeNode   { 
     s   :=   0 
     node   :=   root 
     for   root   !=   nil   { 
         if   root . Right   ==   nil   { 
             s   +=   root . Val 
             root . Val   =   s 
             root   =   root . Left 
         }   else   { 
             next   :=   root . Right 
             for   next . Left   !=   nil   &&   next . Left   !=   root   { 
                 next   =   next . Left 
             } 
             if   next . Left   ==   nil   { 
                 next . Left   =   root 
                 root   =   root . Right 
             }   else   { 
                 s   +=   root . Val 
                 root . Val   =   s 
                 next . Left   =   nil 
                 root   =   root . Left 
             } 
         } 
     } 
     return   node 
}