二叉树 
      
    
      
      
      
        广度优先搜索 
      
    
      
      
      
        树 
      
    
      
      
      
        深度优先搜索 
      
    
   
  
    
      
       
     
  
  
    
      
    
    
      
       
     
  
题目描述 
如果二叉树每个节点都具有相同的值,那么该二叉树就是单值 二叉树。
只有给定的树是单值二叉树时,才返回 true;否则返回 false。
 
示例 1: 
输入: [1,1,1,1,1,null,1]
输出: true
 
示例 2: 
输入: [2,2,2,5,2]
输出: false
 
 
提示: 
    给定树的节点数范围是 [1, 100]。 
    每个节点的值都是整数,范围为 [0, 99] 。 
 
解法 
方法一:DFS 
我们记根节点的值为 \(x\) ,然后设计一个函数 \(\text{dfs}(\text{root})\) ,它表示当前节点的值是否等于 \(x\) ,并且它的左右子树也是单值二叉树。
在函数 \(\text{dfs}(\text{root})\)  中,如果当前节点为空,那么返回 \(\text{true}\) ,否则,如果当前节点的值等于 \(x\) ,并且它的左右子树也是单值二叉树,那么返回 \(\text{true}\) ,否则返回 \(\text{false}\) 。
在主函数中,我们调用 \(\text{dfs}(\text{root})\) ,并返回结果。
时间复杂度 \(O(n)\) ,空间复杂度 \(O(n)\) 。其中 \(n\)  是树中的节点数目。
Python3 Java C++ Go TypeScript Rust 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 # Definition for a binary tree node. 
# class TreeNode: 
#     def __init__(self, val=0, left=None, right=None): 
#         self.val = val 
#         self.left = left 
#         self.right = right 
class   Solution : 
    def   isUnivalTree ( self ,  root :  Optional [ TreeNode ])  ->  bool : 
        def   dfs ( root :  Optional [ TreeNode ])  ->  bool : 
            if  root  is  None : 
                return  True 
            return  root . val  ==  x  and  dfs ( root . left )  and  dfs ( root . right ) 
        x  =  root . val 
        return  dfs ( root ) 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 /** 
 * Definition for a binary tree node. 
 * public class TreeNode { 
 *     int val; 
 *     TreeNode left; 
 *     TreeNode right; 
 *     TreeNode() {} 
 *     TreeNode(int val) { this.val = val; } 
 *     TreeNode(int val, TreeNode left, TreeNode right) { 
 *         this.val = val; 
 *         this.left = left; 
 *         this.right = right; 
 *     } 
 * } 
 */ 
class  Solution   { 
     private   int   x ; 
     public   boolean   isUnivalTree ( TreeNode   root )   { 
         x   =   root . val ; 
         return   dfs ( root ); 
     } 
     private   boolean   dfs ( TreeNode   root )   { 
         if   ( root   ==   null )   { 
             return   true ; 
         } 
         return   root . val   ==   x   &&   dfs ( root . left )   &&   dfs ( root . right ); 
     } 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 /** 
 * Definition for a binary tree node. 
 * struct TreeNode { 
 *     int val; 
 *     TreeNode *left; 
 *     TreeNode *right; 
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} 
 * }; 
 */ 
class   Solution   { 
public : 
     bool   isUnivalTree ( TreeNode *   root )   { 
         int   x   =   root -> val ; 
         auto   dfs   =   [ & ]( this   auto &&   dfs ,   TreeNode *   root )   ->   bool   { 
             if   ( ! root )   { 
                 return   true ; 
             } 
             return   root -> val   ==   x   &&   dfs ( root -> left )   &&   dfs ( root -> right ); 
         }; 
         return   dfs ( root ); 
     } 
}; 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 /** 
 * Definition for a binary tree node. 
 * type TreeNode struct { 
 *     Val int 
 *     Left *TreeNode 
 *     Right *TreeNode 
 * } 
 */ 
func   isUnivalTree ( root   * TreeNode )   bool   { 
     x   :=   root . Val 
     var   dfs   func ( * TreeNode )   bool 
     dfs   =   func ( root   * TreeNode )   bool   { 
         if   root   ==   nil   { 
             return   true 
         } 
         return   root . Val   ==   x   &&   dfs ( root . Left )   &&   dfs ( root . Right ) 
     } 
     return   dfs ( root ) 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 /** 
 * Definition for a binary tree node. 
 * class TreeNode { 
 *     val: number 
 *     left: TreeNode | null 
 *     right: TreeNode | null 
 *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) { 
 *         this.val = (val===undefined ? 0 : val) 
 *         this.left = (left===undefined ? null : left) 
 *         this.right = (right===undefined ? null : right) 
 *     } 
 * } 
 */ 
function   isUnivalTree ( root :   TreeNode   |   null ) :   boolean   { 
     const   x   =   root ! . val ; 
     const   dfs   =   ( root :   TreeNode   |   null ) :   boolean   =>   { 
         if   ( ! root )   { 
             return   true ; 
         } 
         return   root . val   ===   x   &&   dfs ( root . left )   &&   dfs ( root . right ); 
     }; 
     return   dfs ( root ); 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 // Definition for a binary tree node. 
// #[derive(Debug, PartialEq, Eq)] 
// pub struct TreeNode { 
//   pub val: i32, 
//   pub left: Option<Rc<RefCell<TreeNode>>>, 
//   pub right: Option<Rc<RefCell<TreeNode>>>, 
// } 
// 
// impl TreeNode { 
//   #[inline] 
//   pub fn new(val: i32) -> Self { 
//     TreeNode { 
//       val, 
//       left: None, 
//       right: None 
//     } 
//   } 
// } 
use   std :: cell :: RefCell ; 
use   std :: rc :: Rc ; 
impl   Solution   { 
     pub   fn   is_unival_tree ( root :   Option < Rc < RefCell < TreeNode >>> )   ->   bool   { 
         let   x   =   root . as_ref (). unwrap (). borrow (). val ; 
         fn   dfs ( node :   Option < Rc < RefCell < TreeNode >>> ,   x :   i32 )   ->   bool   { 
             if   let   Some ( n )   =   node   { 
                 let   n   =   n . borrow (); 
                 n . val   ==   x   &&   dfs ( n . left . clone (),   x )   &&   dfs ( n . right . clone (),   x ) 
             }   else   { 
                 true 
             } 
         } 
         dfs ( root ,   x ) 
     } 
} 
 
 
 
 
  
  
  
    
    
    
    
      
  
    
      
  
     
   
  GitHub