二叉树 
      
    
      
      
      
        哈希表 
      
    
      
      
      
        树 
      
    
      
      
      
        深度优先搜索 
      
    
   
  
    
      
       
     
  
  
    
      
    
    
      
       
     
  
题目描述 
给你一棵二叉树的根节点 root ,返回所有 重复的子树  。
对于同一类的重复子树,你只需要返回其中任意 一棵  的根结点即可。
如果两棵树具有 相同的结构  和 相同的结点值  ,则认为二者是 重复  的。
 
示例 1: 
输入: root = [1,2,3,4,null,2,4,null,null,4]
输出: [[2,4],[4]] 
示例 2: 
输入: root = [2,1,1]
输出: [[1]] 
示例 3: 
输入: root = [2,2,2,3,null,3,null]
输出: [[2,3],[3]] 
 
提示: 
    树中的结点数在 [1, 5000] 范围内。 
    -200 <= Node.val <= 200 
 
解法 
方法一:后序遍历 
后序遍历,序列化每个子树,用哈希表判断序列化的字符串出现次数是否等于 2,若是,说明这棵子树重复。
Python3 Java C++ Go TypeScript Rust 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 # Definition for a binary tree node. 
# class TreeNode: 
#     def __init__(self, val=0, left=None, right=None): 
#         self.val = val 
#         self.left = left 
#         self.right = right 
class   Solution : 
    def   findDuplicateSubtrees ( 
        self ,  root :  Optional [ TreeNode ] 
    )  ->  List [ Optional [ TreeNode ]]: 
        def   dfs ( root ): 
            if  root  is  None : 
                return  '#' 
            v  =  f ' { root . val } , { dfs ( root . left ) } , { dfs ( root . right ) } ' 
            counter [ v ]  +=  1 
            if  counter [ v ]  ==  2 : 
                ans . append ( root ) 
            return  v 
        ans  =  [] 
        counter  =  Counter () 
        dfs ( root ) 
        return  ans 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 /** 
 * Definition for a binary tree node. 
 * public class TreeNode { 
 *     int val; 
 *     TreeNode left; 
 *     TreeNode right; 
 *     TreeNode() {} 
 *     TreeNode(int val) { this.val = val; } 
 *     TreeNode(int val, TreeNode left, TreeNode right) { 
 *         this.val = val; 
 *         this.left = left; 
 *         this.right = right; 
 *     } 
 * } 
 */ 
class  Solution   { 
     private   Map < String ,   Integer >   counter ; 
     private   List < TreeNode >   ans ; 
     public   List < TreeNode >   findDuplicateSubtrees ( TreeNode   root )   { 
         counter   =   new   HashMap <> (); 
         ans   =   new   ArrayList <> (); 
         dfs ( root ); 
         return   ans ; 
     } 
     private   String   dfs ( TreeNode   root )   { 
         if   ( root   ==   null )   { 
             return   "#" ; 
         } 
         String   v   =   root . val   +   ","   +   dfs ( root . left )   +   ","   +   dfs ( root . right ); 
         counter . put ( v ,   counter . getOrDefault ( v ,   0 )   +   1 ); 
         if   ( counter . get ( v )   ==   2 )   { 
             ans . add ( root ); 
         } 
         return   v ; 
     } 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 /** 
 * Definition for a binary tree node. 
 * struct TreeNode { 
 *     int val; 
 *     TreeNode *left; 
 *     TreeNode *right; 
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} 
 * }; 
 */ 
class   Solution   { 
public : 
     unordered_map < string ,   int >   counter ; 
     vector < TreeNode *>   ans ; 
     vector < TreeNode *>   findDuplicateSubtrees ( TreeNode *   root )   { 
         dfs ( root ); 
         return   ans ; 
     } 
     string   dfs ( TreeNode *   root )   { 
         if   ( ! root )   return   "#" ; 
         string   v   =   to_string ( root -> val )   +   ","   +   dfs ( root -> left )   +   ","   +   dfs ( root -> right ); 
         ++ counter [ v ]; 
         if   ( counter [ v ]   ==   2 )   ans . push_back ( root ); 
         return   v ; 
     } 
}; 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 /** 
 * Definition for a binary tree node. 
 * type TreeNode struct { 
 *     Val int 
 *     Left *TreeNode 
 *     Right *TreeNode 
 * } 
 */ 
func   findDuplicateSubtrees ( root   * TreeNode )   [] * TreeNode   { 
     var   ans   [] * TreeNode 
     counter   :=   make ( map [ string ] int ) 
     var   dfs   func ( root   * TreeNode )   string 
     dfs   =   func ( root   * TreeNode )   string   { 
         if   root   ==   nil   { 
             return   "#" 
         } 
         v   :=   strconv . Itoa ( root . Val )   +   ","   +   dfs ( root . Left )   +   ","   +   dfs ( root . Right ) 
         counter [ v ] ++ 
         if   counter [ v ]   ==   2   { 
             ans   =   append ( ans ,   root ) 
         } 
         return   v 
     } 
     dfs ( root ) 
     return   ans 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 /** 
 * Definition for a binary tree node. 
 * class TreeNode { 
 *     val: number 
 *     left: TreeNode | null 
 *     right: TreeNode | null 
 *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) { 
 *         this.val = (val===undefined ? 0 : val) 
 *         this.left = (left===undefined ? null : left) 
 *         this.right = (right===undefined ? null : right) 
 *     } 
 * } 
 */ 
function   findDuplicateSubtrees ( root :   TreeNode   |   null ) :   Array < TreeNode   |   null >   { 
     const   map   =   new   Map < string ,   number > (); 
     const   res   =   []; 
     const   dfs   =   ( root :   TreeNode   |   null )   =>   { 
         if   ( root   ==   null )   { 
             return   '#' ; 
         } 
         const   {   val ,   left ,   right   }   =   root ; 
         const   s   =   ` ${ val } , ${ dfs ( left ) } , ${ dfs ( right ) } ` ; 
         map . set ( s ,   ( map . get ( s )   ??   0 )   +   1 ); 
         if   ( map . get ( s )   ===   2 )   { 
             res . push ( root ); 
         } 
         return   s ; 
     }; 
     dfs ( root ); 
     return   res ; 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 // Definition for a binary tree node. 
// #[derive(Debug, PartialEq, Eq)] 
// pub struct TreeNode { 
//   pub val: i32, 
//   pub left: Option<Rc<RefCell<TreeNode>>>, 
//   pub right: Option<Rc<RefCell<TreeNode>>>, 
// } 
// 
// impl TreeNode { 
//   #[inline] 
//   pub fn new(val: i32) -> Self { 
//     TreeNode { 
//       val, 
//       left: None, 
//       right: None 
//     } 
//   } 
// } 
use   std :: cell :: RefCell ; 
use   std :: collections :: HashMap ; 
use   std :: rc :: Rc ; 
impl   Solution   { 
     fn   dfs ( 
         root :   & Option < Rc < RefCell < TreeNode >>> , 
         map :   & mut   HashMap < String ,   i32 > , 
         res :   & mut   Vec < Option < Rc < RefCell < TreeNode >>>> , 
     )   ->   String   { 
         if   root . is_none ()   { 
             return   String :: from ( '#' ); 
         } 
         let   s   =   { 
             let   root   =   root . as_ref (). unwrap (). as_ref (). borrow (); 
             format! ( 
                 "{},{},{}" , 
                 root . val . to_string (), 
                 Self :: dfs ( & root . left ,   map ,   res ), 
                 Self :: dfs ( & root . right ,   map ,   res ) 
             ) 
         }; 
         * map . entry ( s . clone ()). or_insert ( 0 )   +=   1 ; 
         if   * map . get ( & s ). unwrap ()   ==   2   { 
             res . push ( root . clone ()); 
         } 
         return   s ; 
     } 
     pub   fn   find_duplicate_subtrees ( 
         root :   Option < Rc < RefCell < TreeNode >>> , 
     )   ->   Vec < Option < Rc < RefCell < TreeNode >>>>   { 
         let   mut   map   =   HashMap :: new (); 
         let   mut   res   =   Vec :: new (); 
         Self :: dfs ( & root ,   & mut   map ,   & mut   res ); 
         res 
     } 
} 
 
 
 
 
  
  
  
    
    
    
    
      
  
    
      
  
     
   
  GitHub