二叉树 
      
    
      
      
      
        字符串 
      
    
      
      
      
        树 
      
    
      
      
      
        深度优先搜索 
      
    
   
  
    
      
       
     
  
  
    
      
    
    
      
       
     
  
题目描述 
给你二叉树的根节点 root ,请你采用前序遍历的方式,将二叉树转化为一个由括号和整数组成的字符串,返回构造出的字符串。
空节点使用一对空括号对 "()" 表示,转化后需要省略所有不影响字符串与原始二叉树之间的一对一映射关系的空括号对。
 
示例 1: 
 
输入: root = [1,2,3,4]
输出: "1(2(4))(3)"
解释: 初步转化后得到 "1(2(4)())(3()())" ,但省略所有不必要的空括号对后,字符串应该是"1(2(4))(3)" 。
 
示例 2: 
 
输入: root = [1,2,3,null,4]
输出: "1(2()(4))(3)"
解释: 和第一个示例类似,但是无法省略第一个空括号对,否则会破坏输入与输出一一映射的关系。 
 
提示: 
    树中节点的数目范围是 [1, 104 ] 
    -1000 <= Node.val <= 1000 
 
 
 
解法 
方法一 
Python3 Java C++ Go TypeScript Rust 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 # Definition for a binary tree node. 
# class TreeNode: 
#     def __init__(self, val=0, left=None, right=None): 
#         self.val = val 
#         self.left = left 
#         self.right = right 
class   Solution : 
    def   tree2str ( self ,  root :  Optional [ TreeNode ])  ->  str : 
        def   dfs ( root ): 
            if  root  is  None : 
                return  '' 
            if  root . left  is  None  and  root . right  is  None : 
                return  str ( root . val ) 
            if  root . right  is  None : 
                return  f ' { root . val } ( { dfs ( root . left ) } )' 
            return  f ' { root . val } ( { dfs ( root . left ) } )( { dfs ( root . right ) } )' 
        return  dfs ( root ) 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 /** 
 * Definition for a binary tree node. 
 * public class TreeNode { 
 *     int val; 
 *     TreeNode left; 
 *     TreeNode right; 
 *     TreeNode() {} 
 *     TreeNode(int val) { this.val = val; } 
 *     TreeNode(int val, TreeNode left, TreeNode right) { 
 *         this.val = val; 
 *         this.left = left; 
 *         this.right = right; 
 *     } 
 * } 
 */ 
class  Solution   { 
     public   String   tree2str ( TreeNode   root )   { 
         if   ( root   ==   null )   { 
             return   "" ; 
         } 
         if   ( root . left   ==   null   &&   root . right   ==   null )   { 
             return   root . val   +   "" ; 
         } 
         if   ( root . right   ==   null )   { 
             return   root . val   +   "("   +   tree2str ( root . left )   +   ")" ; 
         } 
         return   root . val   +   "("   +   tree2str ( root . left )   +   ")("   +   tree2str ( root . right )   +   ")" ; 
     } 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 /** 
 * Definition for a binary tree node. 
 * struct TreeNode { 
 *     int val; 
 *     TreeNode *left; 
 *     TreeNode *right; 
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} 
 * }; 
 */ 
class   Solution   { 
public : 
     string   tree2str ( TreeNode *   root )   { 
         if   ( ! root )   return   "" ; 
         if   ( ! root -> left   &&   ! root -> right )   return   to_string ( root -> val ); 
         if   ( ! root -> right )   return   to_string ( root -> val )   +   "("   +   tree2str ( root -> left )   +   ")" ; 
         return   to_string ( root -> val )   +   "("   +   tree2str ( root -> left )   +   ")("   +   tree2str ( root -> right )   +   ")" ; 
     } 
}; 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 /** 
 * Definition for a binary tree node. 
 * type TreeNode struct { 
 *     Val int 
 *     Left *TreeNode 
 *     Right *TreeNode 
 * } 
 */ 
func   tree2str ( root   * TreeNode )   string   { 
     if   root   ==   nil   { 
         return   "" 
     } 
     if   root . Left   ==   nil   &&   root . Right   ==   nil   { 
         return   strconv . Itoa ( root . Val ) 
     } 
     if   root . Right   ==   nil   { 
         return   strconv . Itoa ( root . Val )   +   "("   +   tree2str ( root . Left )   +   ")" 
     } 
     return   strconv . Itoa ( root . Val )   +   "("   +   tree2str ( root . Left )   +   ")("   +   tree2str ( root . Right )   +   ")" 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 /** 
 * Definition for a binary tree node. 
 * class TreeNode { 
 *     val: number 
 *     left: TreeNode | null 
 *     right: TreeNode | null 
 *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) { 
 *         this.val = (val===undefined ? 0 : val) 
 *         this.left = (left===undefined ? null : left) 
 *         this.right = (right===undefined ? null : right) 
 *     } 
 * } 
 */ 
function   tree2str ( root :   TreeNode   |   null ) :   string   { 
     if   ( root   ==   null )   { 
         return   '' ; 
     } 
     if   ( root . left   ==   null   &&   root . right   ==   null )   { 
         return   ` ${ root . val } ` ; 
     } 
     return   ` ${ root . val } ( ${ root . left   ?   tree2str ( root . left )   :   '' } ) ${ 
         root . right   ?   `( ${ tree2str ( root . right ) } )`   :   '' 
     } ` ; 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 // Definition for a binary tree node. 
// #[derive(Debug, PartialEq, Eq)] 
// pub struct TreeNode { 
//   pub val: i32, 
//   pub left: Option<Rc<RefCell<TreeNode>>>, 
//   pub right: Option<Rc<RefCell<TreeNode>>>, 
// } 
// 
// impl TreeNode { 
//   #[inline] 
//   pub fn new(val: i32) -> Self { 
//     TreeNode { 
//       val, 
//       left: None, 
//       right: None 
//     } 
//   } 
// } 
use   std :: cell :: RefCell ; 
use   std :: rc :: Rc ; 
impl   Solution   { 
     fn   dfs ( root :   & Option < Rc < RefCell < TreeNode >>> ,   res :   & mut   String )   { 
         if   let   Some ( node )   =   root   { 
             let   node   =   node . borrow (); 
             res . push_str ( node . val . to_string (). as_str ()); 
             if   node . left . is_none ()   &&   node . right . is_none ()   { 
                 return ; 
             } 
             res . push ( '(' ); 
             if   node . left . is_some ()   { 
                 Self :: dfs ( & node . left ,   res ); 
             } 
             res . push ( ')' ); 
             if   node . right . is_some ()   { 
                 res . push ( '(' ); 
                 Self :: dfs ( & node . right ,   res ); 
                 res . push ( ')' ); 
             } 
         } 
     } 
     pub   fn   tree2str ( root :   Option < Rc < RefCell < TreeNode >>> )   ->   String   { 
         let   mut   res   =   String :: new (); 
         Self :: dfs ( & root ,   & mut   res ); 
         res 
     } 
} 
 
 
 
 
  
  
  
    
    
    
    
      
  
    
      
  
     
   
  GitHub