二叉树 
      
    
      
      
      
        广度优先搜索 
      
    
      
      
      
        树 
      
    
      
      
      
        深度优先搜索 
      
    
   
  
    
      
       
     
  
  
    
      
    
    
      
       
     
  
题目描述 
给你一棵二叉树的根节点 root ,翻转这棵二叉树,并返回其根节点。
 
示例 1: 
输入: root = [4,2,7,1,3,6,9]
输出: [4,7,2,9,6,3,1]
 
示例 2: 
输入: root = [2,1,3]
输出: [2,3,1]
 
示例 3: 
输入: root = []
输出: []
 
 
提示: 
    树中节点数目范围在 [0, 100] 内 
    -100 <= Node.val <= 100 
 
解法 
方法一:递归 
我们首先判断 \(\textit{root}\)  是否为空,若为空则直接返回 \(\text{null}\) 。然后递归地对树的左右子树进行翻转,将翻转后的右子树作为新的左子树,将翻转后的左子树作为新的右子树,返回 \(\textit{root}\) 。
时间复杂度 \(O(n)\) ,空间复杂度 \(O(n)\) 。其中 \(n\)  是二叉树的节点个数。
Python3 Java C++ Go TypeScript Rust JavaScript C# 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 # Definition for a binary tree node. 
# class TreeNode: 
#     def __init__(self, val=0, left=None, right=None): 
#         self.val = val 
#         self.left = left 
#         self.right = right 
class   Solution : 
    def   invertTree ( self ,  root :  Optional [ TreeNode ])  ->  Optional [ TreeNode ]: 
        if  root  is  None : 
            return  None 
        l ,  r  =  self . invertTree ( root . left ),  self . invertTree ( root . right ) 
        root . left ,  root . right  =  r ,  l 
        return  root 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 /** 
 * Definition for a binary tree node. 
 * public class TreeNode { 
 *     int val; 
 *     TreeNode left; 
 *     TreeNode right; 
 *     TreeNode() {} 
 *     TreeNode(int val) { this.val = val; } 
 *     TreeNode(int val, TreeNode left, TreeNode right) { 
 *         this.val = val; 
 *         this.left = left; 
 *         this.right = right; 
 *     } 
 * } 
 */ 
class  Solution   { 
     public   TreeNode   invertTree ( TreeNode   root )   { 
         if   ( root   ==   null )   { 
             return   null ; 
         } 
         TreeNode   l   =   invertTree ( root . left ); 
         TreeNode   r   =   invertTree ( root . right ); 
         root . left   =   r ; 
         root . right   =   l ; 
         return   root ; 
     } 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 /** 
 * Definition for a binary tree node. 
 * struct TreeNode { 
 *     int val; 
 *     TreeNode *left; 
 *     TreeNode *right; 
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} 
 * }; 
 */ 
class   Solution   { 
public : 
     TreeNode *   invertTree ( TreeNode *   root )   { 
         if   ( ! root )   { 
             return   root ; 
         } 
         TreeNode *   l   =   invertTree ( root -> left ); 
         TreeNode *   r   =   invertTree ( root -> right ); 
         root -> left   =   r ; 
         root -> right   =   l ; 
         return   root ; 
     } 
}; 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 /** 
 * Definition for a binary tree node. 
 * type TreeNode struct { 
 *     Val int 
 *     Left *TreeNode 
 *     Right *TreeNode 
 * } 
 */ 
func   invertTree ( root   * TreeNode )   * TreeNode   { 
     if   root   ==   nil   { 
         return   root 
     } 
     l ,   r   :=   invertTree ( root . Left ),   invertTree ( root . Right ) 
     root . Left ,   root . Right   =   r ,   l 
     return   root 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 /** 
 * Definition for a binary tree node. 
 * class TreeNode { 
 *     val: number 
 *     left: TreeNode | null 
 *     right: TreeNode | null 
 *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) { 
 *         this.val = (val===undefined ? 0 : val) 
 *         this.left = (left===undefined ? null : left) 
 *         this.right = (right===undefined ? null : right) 
 *     } 
 * } 
 */ 
function   invertTree ( root :   TreeNode   |   null ) :   TreeNode   |   null   { 
     if   ( ! root )   { 
         return   root ; 
     } 
     const   l   =   invertTree ( root . left ); 
     const   r   =   invertTree ( root . right ); 
     root . left   =   r ; 
     root . right   =   l ; 
     return   root ; 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 // Definition for a binary tree node. 
// #[derive(Debug, PartialEq, Eq)] 
// pub struct TreeNode { 
//   pub val: i32, 
//   pub left: Option<Rc<RefCell<TreeNode>>>, 
//   pub right: Option<Rc<RefCell<TreeNode>>>, 
// } 
// 
// impl TreeNode { 
//   #[inline] 
//   pub fn new(val: i32) -> Self { 
//     TreeNode { 
//       val, 
//       left: None, 
//       right: None 
//     } 
//   } 
// } 
use   std :: rc :: Rc ; 
use   std :: cell :: RefCell ; 
impl   Solution   { 
     pub   fn   invert_tree ( root :   Option < Rc < RefCell < TreeNode >>> )   ->   Option < Rc < RefCell < TreeNode >>>   { 
         if   let   Some ( node )   =   root . clone ()   { 
             let   mut   node   =   node . borrow_mut (); 
             let   left   =   node . left . take (); 
             let   right   =   node . right . take (); 
             node . left   =   Self :: invert_tree ( right ); 
             node . right   =   Self :: invert_tree ( left ); 
         } 
         root 
     } 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 /** 
 * Definition for a binary tree node. 
 * function TreeNode(val, left, right) { 
 *     this.val = (val===undefined ? 0 : val) 
 *     this.left = (left===undefined ? null : left) 
 *     this.right = (right===undefined ? null : right) 
 * } 
 */ 
/** 
 * @param {TreeNode} root 
 * @return {TreeNode} 
 */ 
var   invertTree   =   function   ( root )   { 
     if   ( ! root )   { 
         return   root ; 
     } 
     const   l   =   invertTree ( root . left ); 
     const   r   =   invertTree ( root . right ); 
     root . left   =   r ; 
     root . right   =   l ; 
     return   root ; 
}; 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 /** 
 * Definition for a binary tree node. 
 * public class TreeNode { 
 *     public int val; 
 *     public TreeNode left; 
 *     public TreeNode right; 
 *     public TreeNode(int val=0, TreeNode left=null, TreeNode right=null) { 
 *         this.val = val; 
 *         this.left = left; 
 *         this.right = right; 
 *     } 
 * } 
 */ 
public   class   Solution   { 
     public   TreeNode   InvertTree ( TreeNode   root )   { 
         if   ( root   ==   null )   { 
             return   null ; 
         } 
         TreeNode   l   =   InvertTree ( root . left ); 
         TreeNode   r   =   InvertTree ( root . right ); 
         root . left   =   r ; 
         root . right   =   l ; 
         return   root ; 
     } 
}