二叉搜索树 
      
    
      
      
      
        二叉树 
      
    
      
      
      
        排序 
      
    
      
      
      
        树 
      
    
      
      
      
        深度优先搜索 
      
    
   
  
    
      
       
     
  
  
    
      
    
    
      
       
     
  
    
题目描述 
给你 root1 和 root2 这两棵二叉搜索树。请你返回一个列表,其中包含 两棵树  中的所有整数并按 升序  排序。.
 
示例 1: 
输入: root1 = [2,1,4], root2 = [1,0,3]
输出: [0,1,1,2,3,4]
 
示例 2: 
输入: root1 = [1,null,8], root2 = [8,1]
输出: [1,1,8,8]
 
 
提示: 
    每棵树的节点数在 [0, 5000] 范围内 
    -105  <= Node.val <= 105  
 
解法 
方法一:DFS + 归并 
由于两棵树都是二叉搜索树,所以我们可以通过中序遍历得到两棵树的节点值序列 \(\textit{a}\)  和 \(\textit{b}\) ,然后使用双指针归并两个有序数组,得到最终的答案。
时间复杂度 \(O(n+m)\) ,空间复杂度 \(O(n+m)\) 。其中 \(n\)  和 \(m\)  分别是两棵树的节点数。
Python3 Java C++ Go TypeScript Rust 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 # Definition for a binary tree node. 
# class TreeNode: 
#     def __init__(self, val=0, left=None, right=None): 
#         self.val = val 
#         self.left = left 
#         self.right = right 
class   Solution : 
    def   getAllElements ( 
        self ,  root1 :  Optional [ TreeNode ],  root2 :  Optional [ TreeNode ] 
    )  ->  List [ int ]: 
        def   dfs ( root :  Optional [ TreeNode ],  nums :  List [ int ])  ->  int : 
            if  root  is  None : 
                return 
            dfs ( root . left ,  nums ) 
            nums . append ( root . val ) 
            dfs ( root . right ,  nums ) 
        a ,  b  =  [],  [] 
        dfs ( root1 ,  a ) 
        dfs ( root2 ,  b ) 
        m ,  n  =  len ( a ),  len ( b ) 
        i  =  j  =  0 
        ans  =  [] 
        while  i  <  m  and  j  <  n : 
            if  a [ i ]  <=  b [ j ]: 
                ans . append ( a [ i ]) 
                i  +=  1 
            else : 
                ans . append ( b [ j ]) 
                j  +=  1 
        while  i  <  m : 
            ans . append ( a [ i ]) 
            i  +=  1 
        while  j  <  n : 
            ans . append ( b [ j ]) 
            j  +=  1 
        return  ans 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 /** 
 * Definition for a binary tree node. 
 * public class TreeNode { 
 *     int val; 
 *     TreeNode left; 
 *     TreeNode right; 
 *     TreeNode() {} 
 *     TreeNode(int val) { this.val = val; } 
 *     TreeNode(int val, TreeNode left, TreeNode right) { 
 *         this.val = val; 
 *         this.left = left; 
 *         this.right = right; 
 *     } 
 * } 
 */ 
class  Solution   { 
     public   List < Integer >   getAllElements ( TreeNode   root1 ,   TreeNode   root2 )   { 
         List < Integer >   a   =   new   ArrayList <> (); 
         List < Integer >   b   =   new   ArrayList <> (); 
         dfs ( root1 ,   a ); 
         dfs ( root2 ,   b ); 
         int   m   =   a . size (),   n   =   b . size (); 
         int   i   =   0 ,   j   =   0 ; 
         List < Integer >   ans   =   new   ArrayList <> (); 
         while   ( i   <   m   &&   j   <   n )   { 
             if   ( a . get ( i )   <=   b . get ( j ))   { 
                 ans . add ( a . get ( i ++ )); 
             }   else   { 
                 ans . add ( b . get ( j ++ )); 
             } 
         } 
         while   ( i   <   m )   { 
             ans . add ( a . get ( i ++ )); 
         } 
         while   ( j   <   n )   { 
             ans . add ( b . get ( j ++ )); 
         } 
         return   ans ; 
     } 
     private   void   dfs ( TreeNode   root ,   List < Integer >   nums )   { 
         if   ( root   ==   null )   { 
             return ; 
         } 
         dfs ( root . left ,   nums ); 
         nums . add ( root . val ); 
         dfs ( root . right ,   nums ); 
     } 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 /** 
 * Definition for a binary tree node. 
 * struct TreeNode { 
 *     int val; 
 *     TreeNode *left; 
 *     TreeNode *right; 
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} 
 * }; 
 */ 
class   Solution   { 
public : 
     vector < int >   getAllElements ( TreeNode *   root1 ,   TreeNode *   root2 )   { 
         vector < int >   a ,   b ,   ans ; 
         dfs ( root1 ,   a ); 
         dfs ( root2 ,   b ); 
         int   i   =   0 ,   j   =   0 ; 
         while   ( i   <   a . size ()   &&   j   <   b . size ())   { 
             if   ( a [ i ]   <=   b [ j ])   { 
                 ans . push_back ( a [ i ++ ]); 
             }   else   { 
                 ans . push_back ( b [ j ++ ]); 
             } 
         } 
         while   ( i   <   a . size ())   { 
             ans . push_back ( a [ i ++ ]); 
         } 
         while   ( j   <   b . size ())   { 
             ans . push_back ( b [ j ++ ]); 
         } 
         return   ans ; 
     } 
private : 
     void   dfs ( TreeNode *   root ,   vector < int >&   nums )   { 
         if   ( root   ==   nullptr )   { 
             return ; 
         } 
         dfs ( root -> left ,   nums ); 
         nums . push_back ( root -> val ); 
         dfs ( root -> right ,   nums ); 
     } 
}; 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 /** 
 * Definition for a binary tree node. 
 * type TreeNode struct { 
 *     Val int 
 *     Left *TreeNode 
 *     Right *TreeNode 
 * } 
 */ 
func   getAllElements ( root1   * TreeNode ,   root2   * TreeNode )   ( ans   [] int )   { 
     var   dfs   func ( * TreeNode ,   * [] int ) 
     dfs   =   func ( root   * TreeNode ,   nums   * [] int )   { 
         if   root   ==   nil   { 
             return 
         } 
         dfs ( root . Left ,   nums ) 
         * nums   =   append ( * nums ,   root . Val ) 
         dfs ( root . Right ,   nums ) 
     } 
     a ,   b   :=   [] int {},   [] int {} 
     dfs ( root1 ,   & a ) 
     dfs ( root2 ,   & b ) 
     i ,   j   :=   0 ,   0 
     m ,   n   :=   len ( a ),   len ( b ) 
     for   i   <   m   &&   j   <   n   { 
         if   a [ i ]   <   b [ j ]   { 
             ans   =   append ( ans ,   a [ i ]) 
             i ++ 
         }   else   { 
             ans   =   append ( ans ,   b [ j ]) 
             j ++ 
         } 
     } 
     for   ;   i   <   m ;   i ++   { 
         ans   =   append ( ans ,   a [ i ]) 
     } 
     for   ;   j   <   n ;   j ++   { 
         ans   =   append ( ans ,   b [ j ]) 
     } 
     return 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 /** 
 * Definition for a binary tree node. 
 * class TreeNode { 
 *     val: number 
 *     left: TreeNode | null 
 *     right: TreeNode | null 
 *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) { 
 *         this.val = (val===undefined ? 0 : val) 
 *         this.left = (left===undefined ? null : left) 
 *         this.right = (right===undefined ? null : right) 
 *     } 
 * } 
 */ 
function   getAllElements ( root1 :   TreeNode   |   null ,   root2 :   TreeNode   |   null ) :   number []   { 
     const   dfs   =   ( root :   TreeNode   |   null ,   nums :   number [])   =>   { 
         if   ( ! root )   { 
             return ; 
         } 
         dfs ( root . left ,   nums ); 
         nums . push ( root . val ); 
         dfs ( root . right ,   nums ); 
     }; 
     const   a :   number []   =   []; 
     const   b :   number []   =   []; 
     dfs ( root1 ,   a ); 
     dfs ( root2 ,   b ); 
     const   [ m ,   n ]   =   [ a . length ,   b . length ]; 
     const   ans :   number []   =   []; 
     let   [ i ,   j ]   =   [ 0 ,   0 ]; 
     while   ( i   <   m   &&   j   <   n )   { 
         if   ( a [ i ]   <   b [ j ])   { 
             ans . push ( a [ i ++ ]); 
         }   else   { 
             ans . push ( b [ j ++ ]); 
         } 
     } 
     while   ( i   <   m )   { 
         ans . push ( a [ i ++ ]); 
     } 
     while   ( j   <   n )   { 
         ans . push ( b [ j ++ ]); 
     } 
     return   ans ; 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 // Definition for a binary tree node. 
// #[derive(Debug, PartialEq, Eq)] 
// pub struct TreeNode { 
//   pub val: i32, 
//   pub left: Option<Rc<RefCell<TreeNode>>>, 
//   pub right: Option<Rc<RefCell<TreeNode>>>, 
// } 
// 
// impl TreeNode { 
//   #[inline] 
//   pub fn new(val: i32) -> Self { 
//     TreeNode { 
//       val, 
//       left: None, 
//       right: None 
//     } 
//   } 
// } 
use   std :: cell :: RefCell ; 
use   std :: rc :: Rc ; 
impl   Solution   { 
     pub   fn   get_all_elements ( 
         root1 :   Option < Rc < RefCell < TreeNode >>> , 
         root2 :   Option < Rc < RefCell < TreeNode >>> , 
     )   ->   Vec < i32 >   { 
         let   mut   a   =   Vec :: new (); 
         let   mut   b   =   Vec :: new (); 
         Solution :: dfs ( & root1 ,   & mut   a ); 
         Solution :: dfs ( & root2 ,   & mut   b ); 
         let   mut   ans   =   Vec :: new (); 
         let   ( mut   i ,   mut   j )   =   ( 0 ,   0 ); 
         while   i   <   a . len ()   &&   j   <   b . len ()   { 
             if   a [ i ]   <=   b [ j ]   { 
                 ans . push ( a [ i ]); 
                 i   +=   1 ; 
             }   else   { 
                 ans . push ( b [ j ]); 
                 j   +=   1 ; 
             } 
         } 
         while   i   <   a . len ()   { 
             ans . push ( a [ i ]); 
             i   +=   1 ; 
         } 
         while   j   <   b . len ()   { 
             ans . push ( b [ j ]); 
             j   +=   1 ; 
         } 
         ans 
     } 
     fn   dfs ( root :   & Option < Rc < RefCell < TreeNode >>> ,   nums :   & mut   Vec < i32 > )   { 
         if   let   Some ( node )   =   root   { 
             let   node   =   node . borrow (); 
             Solution :: dfs ( & node . left ,   nums ); 
             nums . push ( node . val ); 
             Solution :: dfs ( & node . right ,   nums ); 
         } 
     } 
}