二叉树 
      
    
      
      
      
        回溯 
      
    
      
      
      
        树 
      
    
      
      
      
        深度优先搜索 
      
    
   
  
    
      
       
     
  
  
    
      
    
    
      
       
     
  
题目描述 
给你二叉树的根节点 root 和一个整数目标和 targetSum ,找出所有 从根节点到叶子节点  路径总和等于给定目标和的路径。
叶子节点  是指没有子节点的节点。
 
示例 1: 
 
输入: root = [5,4,8,11,null,13,4,7,2,null,null,5,1], targetSum = 22
输出: [[5,4,11,2],[5,8,4,5]]
 
示例 2: 
 
输入: root = [1,2,3], targetSum = 5
输出: []
 
示例 3: 
输入: root = [1,2], targetSum = 0
输出: []
 
 
提示: 
    树中节点总数在范围 [0, 5000] 内 
    -1000 <= Node.val <= 1000 
    -1000 <= targetSum <= 1000 
 
 
 
解法 
方法一:DFS 
我们从根节点开始,递归遍历所有从根节点到叶子节点的路径,并记录路径和。当遍历到叶子节点时,如果此时路径和等于 targetSum,则将此路径加入答案。
时间复杂度 \(O(n^2)\) ,其中 \(n\)  是二叉树的节点数。空间复杂度 \(O(n)\) 。
Python3 Java C++ Go Rust JavaScript 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 # Definition for a binary tree node. 
# class TreeNode: 
#     def __init__(self, val=0, left=None, right=None): 
#         self.val = val 
#         self.left = left 
#         self.right = right 
class   Solution : 
    def   pathSum ( self ,  root :  Optional [ TreeNode ],  targetSum :  int )  ->  List [ List [ int ]]: 
        def   dfs ( root ,  s ): 
            if  root  is  None : 
                return 
            s  +=  root . val 
            t . append ( root . val ) 
            if  root . left  is  None  and  root . right  is  None  and  s  ==  targetSum : 
                ans . append ( t [:]) 
            dfs ( root . left ,  s ) 
            dfs ( root . right ,  s ) 
            t . pop () 
        ans  =  [] 
        t  =  [] 
        dfs ( root ,  0 ) 
        return  ans 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 /** 
 * Definition for a binary tree node. 
 * public class TreeNode { 
 *     int val; 
 *     TreeNode left; 
 *     TreeNode right; 
 *     TreeNode() {} 
 *     TreeNode(int val) { this.val = val; } 
 *     TreeNode(int val, TreeNode left, TreeNode right) { 
 *         this.val = val; 
 *         this.left = left; 
 *         this.right = right; 
 *     } 
 * } 
 */ 
class  Solution   { 
     private   List < List < Integer >>   ans   =   new   ArrayList <> (); 
     private   List < Integer >   t   =   new   ArrayList <> (); 
     public   List < List < Integer >>   pathSum ( TreeNode   root ,   int   targetSum )   { 
         dfs ( root ,   targetSum ); 
         return   ans ; 
     } 
     private   void   dfs ( TreeNode   root ,   int   s )   { 
         if   ( root   ==   null )   { 
             return ; 
         } 
         s   -=   root . val ; 
         t . add ( root . val ); 
         if   ( root . left   ==   null   &&   root . right   ==   null   &&   s   ==   0 )   { 
             ans . add ( new   ArrayList <> ( t )); 
         } 
         dfs ( root . left ,   s ); 
         dfs ( root . right ,   s ); 
         t . remove ( t . size ()   -   1 ); 
     } 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 /** 
 * Definition for a binary tree node. 
 * struct TreeNode { 
 *     int val; 
 *     TreeNode *left; 
 *     TreeNode *right; 
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} 
 * }; 
 */ 
class   Solution   { 
public : 
     vector < vector < int >>   pathSum ( TreeNode *   root ,   int   targetSum )   { 
         vector < vector < int >>   ans ; 
         vector < int >   t ; 
         function < void ( TreeNode * ,   int ) >   dfs   =   [ & ]( TreeNode *   root ,   int   s )   { 
             if   ( ! root )   return ; 
             s   -=   root -> val ; 
             t . emplace_back ( root -> val ); 
             if   ( ! root -> left   &&   ! root -> right   &&   s   ==   0 )   ans . emplace_back ( t ); 
             dfs ( root -> left ,   s ); 
             dfs ( root -> right ,   s ); 
             t . pop_back (); 
         }; 
         dfs ( root ,   targetSum ); 
         return   ans ; 
     } 
}; 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 /** 
 * Definition for a binary tree node. 
 * type TreeNode struct { 
 *     Val int 
 *     Left *TreeNode 
 *     Right *TreeNode 
 * } 
 */ 
func   pathSum ( root   * TreeNode ,   targetSum   int )   ( ans   [][] int )   { 
     t   :=   [] int {} 
     var   dfs   func ( * TreeNode ,   int ) 
     dfs   =   func ( root   * TreeNode ,   s   int )   { 
         if   root   ==   nil   { 
             return 
         } 
         s   -=   root . Val 
         t   =   append ( t ,   root . Val ) 
         if   root . Left   ==   nil   &&   root . Right   ==   nil   &&   s   ==   0   { 
             ans   =   append ( ans ,   slices . Clone ( t )) 
         } 
         dfs ( root . Left ,   s ) 
         dfs ( root . Right ,   s ) 
         t   =   t [: len ( t ) - 1 ] 
     } 
     dfs ( root ,   targetSum ) 
     return 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 // Definition for a binary tree node. 
// #[derive(Debug, PartialEq, Eq)] 
// pub struct TreeNode { 
//   pub val: i32, 
//   pub left: Option<Rc<RefCell<TreeNode>>>, 
//   pub right: Option<Rc<RefCell<TreeNode>>>, 
// } 
// 
// impl TreeNode { 
//   #[inline] 
//   pub fn new(val: i32) -> Self { 
//     TreeNode { 
//       val, 
//       left: None, 
//       right: None 
//     } 
//   } 
// } 
use   std :: cell :: RefCell ; 
use   std :: rc :: Rc ; 
impl   Solution   { 
     fn   dfs ( 
         root :   Option < Rc < RefCell < TreeNode >>> , 
         paths :   & mut   Vec < i32 > , 
         mut   target_sum :   i32 , 
         res :   & mut   Vec < Vec < i32 >> , 
     )   { 
         if   let   Some ( node )   =   root   { 
             let   mut   node   =   node . borrow_mut (); 
             target_sum   -=   node . val ; 
             paths . push ( node . val ); 
             if   node . left . is_none ()   &&   node . right . is_none ()   { 
                 if   target_sum   ==   0   { 
                     res . push ( paths . clone ()); 
                 } 
             }   else   { 
                 if   node . left . is_some ()   { 
                     Self :: dfs ( node . left . take (),   paths ,   target_sum ,   res ); 
                 } 
                 if   node . right . is_some ()   { 
                     Self :: dfs ( node . right . take (),   paths ,   target_sum ,   res ); 
                 } 
             } 
             paths . pop (); 
         } 
     } 
     pub   fn   path_sum ( root :   Option < Rc < RefCell < TreeNode >>> ,   target_sum :   i32 )   ->   Vec < Vec < i32 >>   { 
         let   mut   res   =   vec! []; 
         let   mut   paths   =   vec! []; 
         Self :: dfs ( root ,   & mut   paths ,   target_sum ,   & mut   res ); 
         res 
     } 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 /** 
 * Definition for a binary tree node. 
 * function TreeNode(val, left, right) { 
 *     this.val = (val===undefined ? 0 : val) 
 *     this.left = (left===undefined ? null : left) 
 *     this.right = (right===undefined ? null : right) 
 * } 
 */ 
/** 
 * @param {TreeNode} root 
 * @param {number} targetSum 
 * @return {number[][]} 
 */ 
var   pathSum   =   function   ( root ,   targetSum )   { 
     const   ans   =   []; 
     const   t   =   []; 
     function   dfs ( root ,   s )   { 
         if   ( ! root )   return ; 
         s   -=   root . val ; 
         t . push ( root . val ); 
         if   ( ! root . left   &&   ! root . right   &&   s   ==   0 )   ans . push ([... t ]); 
         dfs ( root . left ,   s ); 
         dfs ( root . right ,   s ); 
         t . pop (); 
     } 
     dfs ( root ,   targetSum ); 
     return   ans ; 
}; 
 
 
 
 
  
  
  
    
    
    
    
      
  
    
      
  
     
   
  GitHub