二叉搜索树 
      
    
      
      
      
        二叉树 
      
    
      
      
      
        树 
      
    
   
  
    
      
       
     
  
  
    
      
    
    
      
       
     
  
题目描述 
给定二叉搜索树(BST)的根节点  root 和一个整数值  val。
你需要在 BST 中找到节点值等于 val 的节点。 返回以该节点为根的子树。 如果节点不存在,则返回  null 。
 
示例 1: 
输入: root = [4,2,7,1,3], val = 2
输出: [2,1,3]
 
示例 2: 
输入: root = [4,2,7,1,3], val = 5
输出: []
 
 
提示: 
    树中节点数在 [1, 5000] 范围内 
    1 <= Node.val <= 107  
    root 是二叉搜索树 
    1 <= val <= 107  
 
解法 
方法一:递归 
我们判断当前节点是否为空或者当前节点的值是否等于目标值,如果是则返回当前节点。
否则,如果当前节点的值大于目标值,则递归搜索左子树,否则递归搜索右子树。
时间复杂度 \(O(n)\) ,空间复杂度 \(O(n)\) 。其中 \(n\)  是二叉树的节点数。
Python3 Java C++ Go TypeScript 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 # Definition for a binary tree node. 
# class TreeNode: 
#     def __init__(self, val=0, left=None, right=None): 
#         self.val = val 
#         self.left = left 
#         self.right = right 
class   Solution : 
    def   searchBST ( self ,  root :  Optional [ TreeNode ],  val :  int )  ->  Optional [ TreeNode ]: 
        if  root  is  None  or  root . val  ==  val : 
            return  root 
        return  ( 
            self . searchBST ( root . left ,  val ) 
            if  root . val  >  val 
            else  self . searchBST ( root . right ,  val ) 
        ) 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 /** 
 * Definition for a binary tree node. 
 * public class TreeNode { 
 *     int val; 
 *     TreeNode left; 
 *     TreeNode right; 
 *     TreeNode() {} 
 *     TreeNode(int val) { this.val = val; } 
 *     TreeNode(int val, TreeNode left, TreeNode right) { 
 *         this.val = val; 
 *         this.left = left; 
 *         this.right = right; 
 *     } 
 * } 
 */ 
class  Solution   { 
     public   TreeNode   searchBST ( TreeNode   root ,   int   val )   { 
         if   ( root   ==   null   ||   root . val   ==   val )   { 
             return   root ; 
         } 
         return   root . val   >   val   ?   searchBST ( root . left ,   val )   :   searchBST ( root . right ,   val ); 
     } 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 /** 
 * Definition for a binary tree node. 
 * struct TreeNode { 
 *     int val; 
 *     TreeNode *left; 
 *     TreeNode *right; 
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} 
 * }; 
 */ 
class   Solution   { 
public : 
     TreeNode *   searchBST ( TreeNode *   root ,   int   val )   { 
         if   ( ! root   ||   root -> val   ==   val )   { 
             return   root ; 
         } 
         return   root -> val   >   val   ?   searchBST ( root -> left ,   val )   :   searchBST ( root -> right ,   val ); 
     } 
}; 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 /** 
 * Definition for a binary tree node. 
 * type TreeNode struct { 
 *     Val int 
 *     Left *TreeNode 
 *     Right *TreeNode 
 * } 
 */ 
  func   searchBST ( root   * TreeNode ,   val   int )   * TreeNode   { 
     if   root   ==   nil   ||   root . Val   ==   val   { 
         return   root 
     } 
     if   root . Val   >   val   { 
         return   searchBST ( root . Left ,   val ) 
     } 
     return   searchBST ( root . Right ,   val ) 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 /** 
 * Definition for a binary tree node. 
 * class TreeNode { 
 *     val: number 
 *     left: TreeNode | null 
 *     right: TreeNode | null 
 *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) { 
 *         this.val = (val===undefined ? 0 : val) 
 *         this.left = (left===undefined ? null : left) 
 *         this.right = (right===undefined ? null : right) 
 *     } 
 * } 
 */ 
function   searchBST ( root :   TreeNode   |   null ,   val :   number ) :   TreeNode   |   null   { 
     if   ( root   ===   null   ||   root . val   ===   val )   { 
         return   root ; 
     } 
     return   root . val   >   val   ?   searchBST ( root . left ,   val )   :   searchBST ( root . right ,   val ); 
} 
 
 
 
 
  
  
  
    
    
    
    
      
  
    
      
  
     
   
  GitHub