二叉树 
      
    
      
      
      
        树 
      
    
      
      
      
        深度优先搜索 
      
    
   
  
    
      
       
     
  
  
    
      
    
    
      
       
     
  
题目描述 
给定一个二叉树的  root ,返回 最长的路径的长度  ,这个路径中的 每个节点具有相同值  。 这条路径可以经过也可以不经过根节点。
两个节点之间的路径长度  由它们之间的边数表示。
 
示例 1: 
输入: root = [5,4,5,1,1,5]
输出: 2
 
示例 2: 
输入: root = [1,4,5,4,4,5]
输出: 2
 
 
提示: 
    树的节点数的范围是  [0, 104 ]  
    -1000 <= Node.val <= 1000 
    树的深度将不超过 1000  
 
解法 
方法一:DFS 
我们设计一个函数 \(\textit{dfs}(root)\) ,表示以 \(\textit{root}\)  节点作为路径的其中一个端点,向下延伸的最长同值路径长度。
在 \(\textit{dfs}(root)\)  中,我们首先递归调用 \(\textit{dfs}(root.\textit{left})\)  和 \(\textit{dfs}(root.\textit{right})\) ,得到两个返回值 \(\textit{l}\)  和 \(\textit{r}\) 。这两个返回值分别代表了以 \(\textit{root}\)  节点的左孩子和右孩子为路径的其中一个端点,向下延伸的最长同值路径长度。
如果 \(\textit{root}\)  存在左孩子且 \(\textit{root}.\textit{val} = \textit{root}.\textit{left}.\textit{val}\) ,那么在 \(\textit{root}\)  的左孩子为路径的其中一个端点,向下延伸的最长同值路径长度应为 \(\textit{l} + 1\) ;否则,这个长度为 \(0\) 。如果 \(\textit{root}\)  存在右孩子且 \(\textit{root}.\textit{val} = \textit{root}.\textit{right}.\textit{val}\) ,那么在 \(\textit{root}\)  的右孩子为路径的其中一个端点,向下延伸的最长同值路径长度应为 \(\textit{r} + 1\) ;否则,这个长度为 \(0\) 。
在递归调用完左右孩子之后,我们更新答案为 \(\max(\textit{ans}, \textit{l} + \textit{r})\) ,即以 \(\textit{root}\)  为端点的路径经过 \(\textit{root}\)  的最长同值路径长度。
最后,\(\textit{dfs}(root)\)  函数返回以 \(\textit{root}\)  为端点的向下延伸的最长同值路径长度,即 \(\max(\textit{l}, \textit{r})\) 。
在主函数中,我们调用 \(\textit{dfs}(root)\) ,即可得到答案。
时间复杂度 \(O(n)\) ,空间复杂度 \(O(n)\) 。其中 \(n\)  为二叉树的节点个数。
Python3 Java C++ Go TypeScript Rust JavaScript C 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 # Definition for a binary tree node. 
# class TreeNode: 
#     def __init__(self, val=0, left=None, right=None): 
#         self.val = val 
#         self.left = left 
#         self.right = right 
class   Solution : 
    def   longestUnivaluePath ( self ,  root :  Optional [ TreeNode ])  ->  int : 
        def   dfs ( root :  Optional [ TreeNode ])  ->  int : 
            if  root  is  None : 
                return  0 
            l ,  r  =  dfs ( root . left ),  dfs ( root . right ) 
            l  =  l  +  1  if  root . left  and  root . left . val  ==  root . val  else  0 
            r  =  r  +  1  if  root . right  and  root . right . val  ==  root . val  else  0 
            nonlocal  ans 
            ans  =  max ( ans ,  l  +  r ) 
            return  max ( l ,  r ) 
        ans  =  0 
        dfs ( root ) 
        return  ans 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 /** 
 * Definition for a binary tree node. 
 * public class TreeNode { 
 *     int val; 
 *     TreeNode left; 
 *     TreeNode right; 
 *     TreeNode() {} 
 *     TreeNode(int val) { this.val = val; } 
 *     TreeNode(int val, TreeNode left, TreeNode right) { 
 *         this.val = val; 
 *         this.left = left; 
 *         this.right = right; 
 *     } 
 * } 
 */ 
class  Solution   { 
     private   int   ans ; 
     public   int   longestUnivaluePath ( TreeNode   root )   { 
         dfs ( root ); 
         return   ans ; 
     } 
     private   int   dfs ( TreeNode   root )   { 
         if   ( root   ==   null )   { 
             return   0 ; 
         } 
         int   l   =   dfs ( root . left ); 
         int   r   =   dfs ( root . right ); 
         l   =   root . left   !=   null   &&   root . left . val   ==   root . val   ?   l   +   1   :   0 ; 
         r   =   root . right   !=   null   &&   root . right . val   ==   root . val   ?   r   +   1   :   0 ; 
         ans   =   Math . max ( ans ,   l   +   r ); 
         return   Math . max ( l ,   r ); 
     } 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 /** 
 * Definition for a binary tree node. 
 * struct TreeNode { 
 *     int val; 
 *     TreeNode *left; 
 *     TreeNode *right; 
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} 
 * }; 
 */ 
class   Solution   { 
public : 
     int   longestUnivaluePath ( TreeNode *   root )   { 
         int   ans   =   0 ; 
         auto   dfs   =   [ & ]( this   auto &&   dfs ,   TreeNode *   root )   ->   int   { 
             if   ( ! root )   { 
                 return   0 ; 
             } 
             int   l   =   dfs ( root -> left ); 
             int   r   =   dfs ( root -> right ); 
             l   =   root -> left   &&   root -> left -> val   ==   root -> val   ?   l   +   1   :   0 ; 
             r   =   root -> right   &&   root -> right -> val   ==   root -> val   ?   r   +   1   :   0 ; 
             ans   =   max ( ans ,   l   +   r ); 
             return   max ( l ,   r ); 
         }; 
         dfs ( root ); 
         return   ans ; 
     } 
}; 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 /** 
 * Definition for a binary tree node. 
 * type TreeNode struct { 
 *     Val int 
 *     Left *TreeNode 
 *     Right *TreeNode 
 * } 
 */ 
func   longestUnivaluePath ( root   * TreeNode )   ( ans   int )   { 
     var   dfs   func ( * TreeNode )   int 
     dfs   =   func ( root   * TreeNode )   int   { 
         if   root   ==   nil   { 
             return   0 
         } 
         l ,   r   :=   dfs ( root . Left ),   dfs ( root . Right ) 
         if   root . Left   !=   nil   &&   root . Left . Val   ==   root . Val   { 
             l ++ 
         }   else   { 
             l   =   0 
         } 
         if   root . Right   !=   nil   &&   root . Right . Val   ==   root . Val   { 
             r ++ 
         }   else   { 
             r   =   0 
         } 
         ans   =   max ( ans ,   l + r ) 
         return   max ( l ,   r ) 
     } 
     dfs ( root ) 
     return 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 /** 
 * Definition for a binary tree node. 
 * class TreeNode { 
 *     val: number 
 *     left: TreeNode | null 
 *     right: TreeNode | null 
 *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) { 
 *         this.val = (val===undefined ? 0 : val) 
 *         this.left = (left===undefined ? null : left) 
 *         this.right = (right===undefined ? null : right) 
 *     } 
 * } 
 */ 
function   longestUnivaluePath ( root :   TreeNode   |   null ) :   number   { 
     let   ans :   number   =   0 ; 
     const   dfs   =   ( root :   TreeNode   |   null ) :   number   =>   { 
         if   ( ! root )   { 
             return   0 ; 
         } 
         let   [ l ,   r ]   =   [ dfs ( root . left ),   dfs ( root . right )]; 
         l   =   root . left   &&   root . left . val   ===   root . val   ?   l   +   1   :   0 ; 
         r   =   root . right   &&   root . right . val   ===   root . val   ?   r   +   1   :   0 ; 
         ans   =   Math . max ( ans ,   l   +   r ); 
         return   Math . max ( l ,   r ); 
     }; 
     dfs ( root ); 
     return   ans ; 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 // Definition for a binary tree node. 
// #[derive(Debug, PartialEq, Eq)] 
// pub struct TreeNode { 
//   pub val: i32, 
//   pub left: Option<Rc<RefCell<TreeNode>>>, 
//   pub right: Option<Rc<RefCell<TreeNode>>>, 
// } 
// 
// impl TreeNode { 
//   #[inline] 
//   pub fn new(val: i32) -> Self { 
//     TreeNode { 
//       val, 
//       left: None, 
//       right: None 
//     } 
//   } 
// } 
use   std :: cell :: RefCell ; 
use   std :: rc :: Rc ; 
impl   Solution   { 
     fn   dfs ( root :   & Option < Rc < RefCell < TreeNode >>> ,   target :   i32 ,   ans :   & mut   i32 )   ->   i32   { 
         if   root . is_none ()   { 
             return   0 ; 
         } 
         let   root   =   root . as_ref (). unwrap (). borrow (); 
         let   left   =   Self :: dfs ( & root . left ,   root . val ,   ans ); 
         let   right   =   Self :: dfs ( & root . right ,   root . val ,   ans ); 
         * ans   =   ( * ans ). max ( left   +   right ); 
         if   root . val   ==   target   { 
             return   left . max ( right )   +   1 ; 
         } 
         0 
     } 
     pub   fn   longest_univalue_path ( root :   Option < Rc < RefCell < TreeNode >>> )   ->   i32   { 
         if   root . is_none ()   { 
             return   0 ; 
         } 
         let   mut   ans   =   0 ; 
         Self :: dfs ( & root ,   root . as_ref (). unwrap (). borrow (). val ,   & mut   ans ); 
         ans 
     } 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 /** 
 * Definition for a binary tree node. 
 * function TreeNode(val, left, right) { 
 *     this.val = (val===undefined ? 0 : val) 
 *     this.left = (left===undefined ? null : left) 
 *     this.right = (right===undefined ? null : right) 
 * } 
 */ 
/** 
 * @param {TreeNode} root 
 * @return {number} 
 */ 
var   longestUnivaluePath   =   function   ( root )   { 
     let   ans   =   0 ; 
     const   dfs   =   root   =>   { 
         if   ( ! root )   { 
             return   0 ; 
         } 
         let   [ l ,   r ]   =   [ dfs ( root . left ),   dfs ( root . right )]; 
         l   =   root . left   &&   root . left . val   ===   root . val   ?   l   +   1   :   0 ; 
         r   =   root . right   &&   root . right . val   ===   root . val   ?   r   +   1   :   0 ; 
         ans   =   Math . max ( ans ,   l   +   r ); 
         return   Math . max ( l ,   r ); 
     }; 
     dfs ( root ); 
     return   ans ; 
}; 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 /** 
 * Definition for a binary tree node. 
 * struct TreeNode { 
 *     int val; 
 *     struct TreeNode *left; 
 *     struct TreeNode *right; 
 * }; 
 */ 
#define max(a, b) (((a) > (b)) ? (a) : (b)) 
int   dfs ( struct   TreeNode *   root ,   int *   ans )   { 
     if   ( ! root )   { 
         return   0 ; 
     } 
     int   l   =   dfs ( root -> left ,   ans ); 
     int   r   =   dfs ( root -> right ,   ans ); 
     l   =   root -> left   &&   root -> left -> val   ==   root -> val   ?   l   +   1   :   0 ; 
     r   =   root -> right   &&   root -> right -> val   ==   root -> val   ?   r   +   1   :   0 ; 
     * ans   =   max ( * ans ,   l   +   r ); 
     return   max ( l ,   r ); 
} 
int   longestUnivaluePath ( struct   TreeNode *   root )   { 
     int   ans   =   0 ; 
     dfs ( root ,   & ans ); 
     return   ans ; 
} 
 
 
 
 
  
  
  
    
    
    
    
      
  
    
      
  
     
   
  GitHub