二叉搜索树 
      
    
      
      
      
        二叉树 
      
    
      
      
      
        树 
      
    
      
      
      
        深度优先搜索 
      
    
   
  
    
      
       
     
  
  
    
      
    
    
      
       
     
  
题目描述 
给你二叉搜索树的根节点 root ,同时给定最小边界low 和最大边界 high。通过修剪二叉搜索树,使得所有节点的值在[low, high]中。修剪树 不应该  改变保留在树中的元素的相对结构 (即,如果没有被移除,原有的父代子代关系都应当保留)。 可以证明,存在 唯一的答案  。
所以结果应当返回修剪好的二叉搜索树的新的根节点。注意,根节点可能会根据给定的边界发生改变。
 
示例 1: 
输入: root = [1,0,2], low = 1, high = 2
输出: [1,null,2]
 
示例 2: 
输入: root = [3,0,4,null,2,null,null,1], low = 1, high = 3
输出: [3,2,null,1]
 
 
提示: 
    树中节点数在范围 [1, 104 ] 内 
    0 <= Node.val <= 104  
    树中每个节点的值都是 唯一  的 
    题目数据保证输入是一棵有效的二叉搜索树 
    0 <= low <= high <= 104  
 
解法 
方法一:递归 
判断 root.val 与 low 和 high 的大小关系:
若 root.val 大于 high,说明当前 root 节点与其右子树所有节点的值均大于 high,那么递归修剪 root.left 即可; 
若 root.val 小于 low,说明当前 root 节点与其左子树所有节点的值均小于 low,那么递归修剪 root.right 即可; 
若 root.val 在 [low, high] 之间,说明当前 root 应该保留,递归修剪 root.left, root.right,并且返回 root。 
 
递归的终止条件是 root 节点为空。
时间复杂度 \(O(n)\) ,空间复杂度 \(O(n)\) 。其中 \(n\)  是二叉搜索树的节点个数。
Python3 Java C++ Go TypeScript Rust JavaScript C 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 # Definition for a binary tree node. 
# class TreeNode: 
#     def __init__(self, val=0, left=None, right=None): 
#         self.val = val 
#         self.left = left 
#         self.right = right 
class   Solution : 
    def   trimBST ( 
        self ,  root :  Optional [ TreeNode ],  low :  int ,  high :  int 
    )  ->  Optional [ TreeNode ]: 
        def   dfs ( root ): 
            if  root  is  None : 
                return  root 
            if  root . val  >  high : 
                return  dfs ( root . left ) 
            if  root . val  <  low : 
                return  dfs ( root . right ) 
            root . left  =  dfs ( root . left ) 
            root . right  =  dfs ( root . right ) 
            return  root 
        return  dfs ( root ) 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 /** 
 * Definition for a binary tree node. 
 * public class TreeNode { 
 *     int val; 
 *     TreeNode left; 
 *     TreeNode right; 
 *     TreeNode() {} 
 *     TreeNode(int val) { this.val = val; } 
 *     TreeNode(int val, TreeNode left, TreeNode right) { 
 *         this.val = val; 
 *         this.left = left; 
 *         this.right = right; 
 *     } 
 * } 
 */ 
class  Solution   { 
     public   TreeNode   trimBST ( TreeNode   root ,   int   low ,   int   high )   { 
         if   ( root   ==   null )   { 
             return   root ; 
         } 
         if   ( root . val   >   high )   { 
             return   trimBST ( root . left ,   low ,   high ); 
         } 
         if   ( root . val   <   low )   { 
             return   trimBST ( root . right ,   low ,   high ); 
         } 
         root . left   =   trimBST ( root . left ,   low ,   high ); 
         root . right   =   trimBST ( root . right ,   low ,   high ); 
         return   root ; 
     } 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 /** 
 * Definition for a binary tree node. 
 * struct TreeNode { 
 *     int val; 
 *     TreeNode *left; 
 *     TreeNode *right; 
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} 
 * }; 
 */ 
class   Solution   { 
public : 
     TreeNode *   trimBST ( TreeNode *   root ,   int   low ,   int   high )   { 
         if   ( ! root )   return   root ; 
         if   ( root -> val   >   high )   return   trimBST ( root -> left ,   low ,   high ); 
         if   ( root -> val   <   low )   return   trimBST ( root -> right ,   low ,   high ); 
         root -> left   =   trimBST ( root -> left ,   low ,   high ); 
         root -> right   =   trimBST ( root -> right ,   low ,   high ); 
         return   root ; 
     } 
}; 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 /** 
 * Definition for a binary tree node. 
 * type TreeNode struct { 
 *     Val int 
 *     Left *TreeNode 
 *     Right *TreeNode 
 * } 
 */ 
func   trimBST ( root   * TreeNode ,   low   int ,   high   int )   * TreeNode   { 
     if   root   ==   nil   { 
         return   root 
     } 
     if   root . Val   >   high   { 
         return   trimBST ( root . Left ,   low ,   high ) 
     } 
     if   root . Val   <   low   { 
         return   trimBST ( root . Right ,   low ,   high ) 
     } 
     root . Left   =   trimBST ( root . Left ,   low ,   high ) 
     root . Right   =   trimBST ( root . Right ,   low ,   high ) 
     return   root 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 /** 
 * Definition for a binary tree node. 
 * class TreeNode { 
 *     val: number 
 *     left: TreeNode | null 
 *     right: TreeNode | null 
 *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) { 
 *         this.val = (val===undefined ? 0 : val) 
 *         this.left = (left===undefined ? null : left) 
 *         this.right = (right===undefined ? null : right) 
 *     } 
 * } 
 */ 
function   trimBST ( root :   TreeNode   |   null ,   low :   number ,   high :   number ) :   TreeNode   |   null   { 
     const   dfs   =   ( root :   TreeNode   |   null )   =>   { 
         if   ( root   ==   null )   { 
             return   root ; 
         } 
         const   {   val ,   left ,   right   }   =   root ; 
         if   ( val   <   low   ||   val   >   high )   { 
             return   dfs ( left )   ||   dfs ( right ); 
         } 
         root . left   =   dfs ( left ); 
         root . right   =   dfs ( right ); 
         return   root ; 
     }; 
     return   dfs ( root ); 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 // Definition for a binary tree node. 
// #[derive(Debug, PartialEq, Eq)] 
// pub struct TreeNode { 
//   pub val: i32, 
//   pub left: Option<Rc<RefCell<TreeNode>>>, 
//   pub right: Option<Rc<RefCell<TreeNode>>>, 
// } 
// 
// impl TreeNode { 
//   #[inline] 
//   pub fn new(val: i32) -> Self { 
//     TreeNode { 
//       val, 
//       left: None, 
//       right: None 
//     } 
//   } 
// } 
use   std :: cell :: RefCell ; 
use   std :: rc :: Rc ; 
impl   Solution   { 
     pub   fn   trim_bst ( 
         mut   root :   Option < Rc < RefCell < TreeNode >>> , 
         low :   i32 , 
         high :   i32 , 
     )   ->   Option < Rc < RefCell < TreeNode >>>   { 
         if   root . is_none ()   { 
             return   root ; 
         } 
         { 
             let   mut   node   =   root . as_mut (). unwrap (). borrow_mut (); 
             if   node . val   <   low   { 
                 return   Self :: trim_bst ( node . right . take (),   low ,   high ); 
             } 
             if   node . val   >   high   { 
                 return   Self :: trim_bst ( node . left . take (),   low ,   high ); 
             } 
             node . left   =   Self :: trim_bst ( node . left . take (),   low ,   high ); 
             node . right   =   Self :: trim_bst ( node . right . take (),   low ,   high ); 
         } 
         root 
     } 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 /** 
 * Definition for a binary tree node. 
 * function TreeNode(val, left, right) { 
 *     this.val = (val===undefined ? 0 : val) 
 *     this.left = (left===undefined ? null : left) 
 *     this.right = (right===undefined ? null : right) 
 * } 
 */ 
/** 
 * @param {TreeNode} root 
 * @param {number} low 
 * @param {number} high 
 * @return {TreeNode} 
 */ 
var   trimBST   =   function   ( root ,   low ,   high )   { 
     function   dfs ( root )   { 
         if   ( ! root )   { 
             return   root ; 
         } 
         if   ( root . val   <   low )   { 
             return   dfs ( root . right ); 
         } 
         if   ( root . val   >   high )   { 
             return   dfs ( root . left ); 
         } 
         root . left   =   dfs ( root . left ); 
         root . right   =   dfs ( root . right ); 
         return   root ; 
     } 
     return   dfs ( root ); 
}; 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 /** 
 * Definition for a binary tree node. 
 * struct TreeNode { 
 *     int val; 
 *     struct TreeNode *left; 
 *     struct TreeNode *right; 
 * }; 
 */ 
struct   TreeNode *   trimBST ( struct   TreeNode *   root ,   int   low ,   int   high )   { 
     if   ( ! root )   { 
         return   root ; 
     } 
     if   ( root -> val   <   low )   { 
         return   trimBST ( root -> right ,   low ,   high ); 
     } 
     if   ( root -> val   >   high )   { 
         return   trimBST ( root -> left ,   low ,   high ); 
     } 
     root -> left   =   trimBST ( root -> left ,   low ,   high ); 
     root -> right   =   trimBST ( root -> right ,   low ,   high ); 
     return   root ; 
} 
 
 
 
 
方法二:迭代 
我们先循环判断 root,若 root.val 不在 [low, high] 之间,那么直接将 root 置为对应的左孩子或右孩子,循环直至 root 为空或者 root.val 在 [low, high] 之间。
若此时 root 为空,直接返回。否则,说明 root 是一个需要保留的节点。接下来只需要分别迭代修剪 root 的左右子树。
以左子树 node = root.left 为例:
若 node.left.val 小于 low,那么 node.left 及其左孩子均不满足条件,我们直接将 node.left 置为 node.left.right; 
否则,我们将 node 置为 node.left; 
循环判断,直至 node.left 为空。 
 
右子树的修剪过程与之类似。
时间复杂度 \(O(n)\) ,空间复杂度 \(O(1)\) 。其中 \(n\)  是二叉搜索树的节点个数。
Python3 Java C++ Go JavaScript 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 # Definition for a binary tree node. 
# class TreeNode: 
#     def __init__(self, val=0, left=None, right=None): 
#         self.val = val 
#         self.left = left 
#         self.right = right 
class   Solution : 
    def   trimBST ( 
        self ,  root :  Optional [ TreeNode ],  low :  int ,  high :  int 
    )  ->  Optional [ TreeNode ]: 
        while  root  and  ( root . val  <  low  or  root . val  >  high ): 
            root  =  root . left  if  root . val  >  high  else  root . right 
        if  root  is  None : 
            return  None 
        node  =  root 
        while  node . left : 
            if  node . left . val  <  low : 
                node . left  =  node . left . right 
            else : 
                node  =  node . left 
        node  =  root 
        while  node . right : 
            if  node . right . val  >  high : 
                node . right  =  node . right . left 
            else : 
                node  =  node . right 
        return  root 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 /** 
 * Definition for a binary tree node. 
 * public class TreeNode { 
 *     int val; 
 *     TreeNode left; 
 *     TreeNode right; 
 *     TreeNode() {} 
 *     TreeNode(int val) { this.val = val; } 
 *     TreeNode(int val, TreeNode left, TreeNode right) { 
 *         this.val = val; 
 *         this.left = left; 
 *         this.right = right; 
 *     } 
 * } 
 */ 
class  Solution   { 
     public   TreeNode   trimBST ( TreeNode   root ,   int   low ,   int   high )   { 
         while   ( root   !=   null   &&   ( root . val   <   low   ||   root . val   >   high ))   { 
             root   =   root . val   <   low   ?   root . right   :   root . left ; 
         } 
         if   ( root   ==   null )   { 
             return   null ; 
         } 
         TreeNode   node   =   root ; 
         while   ( node . left   !=   null )   { 
             if   ( node . left . val   <   low )   { 
                 node . left   =   node . left . right ; 
             }   else   { 
                 node   =   node . left ; 
             } 
         } 
         node   =   root ; 
         while   ( node . right   !=   null )   { 
             if   ( node . right . val   >   high )   { 
                 node . right   =   node . right . left ; 
             }   else   { 
                 node   =   node . right ; 
             } 
         } 
         return   root ; 
     } 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 /** 
 * Definition for a binary tree node. 
 * struct TreeNode { 
 *     int val; 
 *     TreeNode *left; 
 *     TreeNode *right; 
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} 
 * }; 
 */ 
class   Solution   { 
public : 
     TreeNode *   trimBST ( TreeNode *   root ,   int   low ,   int   high )   { 
         while   ( root   &&   ( root -> val   <   low   ||   root -> val   >   high ))   { 
             root   =   root -> val   <   low   ?   root -> right   :   root -> left ; 
         } 
         if   ( ! root )   { 
             return   root ; 
         } 
         TreeNode *   node   =   root ; 
         while   ( node -> left )   { 
             if   ( node -> left -> val   <   low )   { 
                 node -> left   =   node -> left -> right ; 
             }   else   { 
                 node   =   node -> left ; 
             } 
         } 
         node   =   root ; 
         while   ( node -> right )   { 
             if   ( node -> right -> val   >   high )   { 
                 node -> right   =   node -> right -> left ; 
             }   else   { 
                 node   =   node -> right ; 
             } 
         } 
         return   root ; 
     } 
}; 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 /** 
 * Definition for a binary tree node. 
 * type TreeNode struct { 
 *     Val int 
 *     Left *TreeNode 
 *     Right *TreeNode 
 * } 
 */ 
func   trimBST ( root   * TreeNode ,   low   int ,   high   int )   * TreeNode   { 
     for   root   !=   nil   &&   ( root . Val   <   low   ||   root . Val   >   high )   { 
         if   root . Val   <   low   { 
             root   =   root . Right 
         }   else   { 
             root   =   root . Left 
         } 
     } 
     if   root   ==   nil   { 
         return   nil 
     } 
     node   :=   root 
     for   node . Left   !=   nil   { 
         if   node . Left . Val   <   low   { 
             node . Left   =   node . Left . Right 
         }   else   { 
             node   =   node . Left 
         } 
     } 
     node   =   root 
     for   node . Right   !=   nil   { 
         if   node . Right . Val   >   high   { 
             node . Right   =   node . Right . Left 
         }   else   { 
             node   =   node . Right 
         } 
     } 
     return   root 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 /** 
 * Definition for a binary tree node. 
 * function TreeNode(val, left, right) { 
 *     this.val = (val===undefined ? 0 : val) 
 *     this.left = (left===undefined ? null : left) 
 *     this.right = (right===undefined ? null : right) 
 * } 
 */ 
/** 
 * @param {TreeNode} root 
 * @param {number} low 
 * @param {number} high 
 * @return {TreeNode} 
 */ 
var   trimBST   =   function   ( root ,   low ,   high )   { 
     while   ( root   &&   ( root . val   <   low   ||   root . val   >   high ))   { 
         root   =   root . val   <   low   ?   root . right   :   root . left ; 
     } 
     if   ( ! root )   { 
         return   root ; 
     } 
     let   node   =   root ; 
     while   ( node . left )   { 
         if   ( node . left . val   <   low )   { 
             node . left   =   node . left . right ; 
         }   else   { 
             node   =   node . left ; 
         } 
     } 
     node   =   root ; 
     while   ( node . right )   { 
         if   ( node . right . val   >   high )   { 
             node . right   =   node . right . left ; 
         }   else   { 
             node   =   node . right ; 
         } 
     } 
     return   root ; 
};