二叉树 
      
    
      
      
      
        广度优先搜索 
      
    
      
      
      
        树 
      
    
      
      
      
        深度优先搜索 
      
    
   
  
    
      
       
     
  
  
    
      
    
    
      
       
     
  
题目描述 
给定一个非空二叉树的根节点  root , 以数组的形式返回每一层节点的平均值。与实际答案相差 10-5  以内的答案可以被接受。
 
示例 1: 
输入: root = [3,9,20,null,null,15,7]
输出: [3.00000,14.50000,11.00000]
解释: 第 0 层的平均值为 3,第 1 层的平均值为 14.5,第 2 层的平均值为 11 。
因此返回 [3, 14.5, 11] 。
 
示例 2: 
输入: root = [3,9,20,15,7]
输出: [3.00000,14.50000,11.00000]
 
 
提示: 
    树中节点数量在 [1, 104 ] 范围内 
    -231  <= Node.val <= 231  - 1 
 
解法 
方法一:BFS 
我们可以使用广度优先搜索的方法,遍历每一层的节点,计算每一层的平均值。
具体地,我们定义一个队列 \(q\) ,初始时将根节点加入队列。每次将队列中的所有节点取出,计算这些节点的平均值,加入答案数组中,并将这些节点的子节点加入队列。重复这一过程,直到队列为空。
时间复杂度 \(O(n)\) ,空间复杂度 \(O(n)\) 。其中 \(n\)  是二叉树的节点个数。
Python3 Java C++ Go Rust JavaScript 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 # Definition for a binary tree node. 
# class TreeNode: 
#     def __init__(self, val=0, left=None, right=None): 
#         self.val = val 
#         self.left = left 
#         self.right = right 
class   Solution : 
    def   averageOfLevels ( self ,  root :  Optional [ TreeNode ])  ->  List [ float ]: 
        q  =  deque ([ root ]) 
        ans  =  [] 
        while  q : 
            s ,  n  =  0 ,  len ( q ) 
            for  _  in  range ( n ): 
                root  =  q . popleft () 
                s  +=  root . val 
                if  root . left : 
                    q . append ( root . left ) 
                if  root . right : 
                    q . append ( root . right ) 
            ans . append ( s  /  n ) 
        return  ans 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 /** 
 * Definition for a binary tree node. 
 * public class TreeNode { 
 *     int val; 
 *     TreeNode left; 
 *     TreeNode right; 
 *     TreeNode() {} 
 *     TreeNode(int val) { this.val = val; } 
 *     TreeNode(int val, TreeNode left, TreeNode right) { 
 *         this.val = val; 
 *         this.left = left; 
 *         this.right = right; 
 *     } 
 * } 
 */ 
class  Solution   { 
     public   List < Double >   averageOfLevels ( TreeNode   root )   { 
         List < Double >   ans   =   new   ArrayList <> (); 
         Deque < TreeNode >   q   =   new   ArrayDeque <> (); 
         q . offer ( root ); 
         while   ( ! q . isEmpty ())   { 
             int   n   =   q . size (); 
             long   s   =   0 ; 
             for   ( int   i   =   0 ;   i   <   n ;   ++ i )   { 
                 root   =   q . pollFirst (); 
                 s   +=   root . val ; 
                 if   ( root . left   !=   null )   { 
                     q . offer ( root . left ); 
                 } 
                 if   ( root . right   !=   null )   { 
                     q . offer ( root . right ); 
                 } 
             } 
             ans . add ( s   *   1.0   /   n ); 
         } 
         return   ans ; 
     } 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 /** 
 * Definition for a binary tree node. 
 * struct TreeNode { 
 *     int val; 
 *     TreeNode *left; 
 *     TreeNode *right; 
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} 
 * }; 
 */ 
class   Solution   { 
public : 
     vector < double >   averageOfLevels ( TreeNode *   root )   { 
         queue < TreeNode *>   q {{ root }}; 
         vector < double >   ans ; 
         while   ( ! q . empty ())   { 
             int   n   =   q . size (); 
             long   long   s   =   0 ; 
             for   ( int   i   =   0 ;   i   <   n ;   ++ i )   { 
                 root   =   q . front (); 
                 q . pop (); 
                 s   +=   root -> val ; 
                 if   ( root -> left )   { 
                     q . push ( root -> left ); 
                 } 
                 if   ( root -> right )   { 
                     q . push ( root -> right ); 
                 } 
             } 
             ans . push_back ( s   *   1.0   /   n ); 
         } 
         return   ans ; 
     } 
}; 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 /** 
 * Definition for a binary tree node. 
 * type TreeNode struct { 
 *     Val int 
 *     Left *TreeNode 
 *     Right *TreeNode 
 * } 
 */ 
func   averageOfLevels ( root   * TreeNode )   [] float64   { 
     q   :=   [] * TreeNode { root } 
     ans   :=   [] float64 {} 
     for   len ( q )   >   0   { 
         n   :=   len ( q ) 
         s   :=   0 
         for   i   :=   0 ;   i   <   n ;   i ++   { 
             root   =   q [ 0 ] 
             q   =   q [ 1 :] 
             s   +=   root . Val 
             if   root . Left   !=   nil   { 
                 q   =   append ( q ,   root . Left ) 
             } 
             if   root . Right   !=   nil   { 
                 q   =   append ( q ,   root . Right ) 
             } 
         } 
         ans   =   append ( ans ,   float64 ( s ) / float64 ( n )) 
     } 
     return   ans 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 // Definition for a binary tree node. 
// #[derive(Debug, PartialEq, Eq)] 
// pub struct TreeNode { 
//   pub val: i32, 
//   pub left: Option<Rc<RefCell<TreeNode>>>, 
//   pub right: Option<Rc<RefCell<TreeNode>>>, 
// } 
// 
// impl TreeNode { 
//   #[inline] 
//   pub fn new(val: i32) -> Self { 
//     TreeNode { 
//       val, 
//       left: None, 
//       right: None 
//     } 
//   } 
// } 
use   std :: cell :: RefCell ; 
use   std :: collections :: VecDeque ; 
use   std :: rc :: Rc ; 
impl   Solution   { 
     pub   fn   average_of_levels ( root :   Option < Rc < RefCell < TreeNode >>> )   ->   Vec < f64 >   { 
         let   mut   ans   =   vec! []; 
         let   mut   q   =   VecDeque :: new (); 
         if   let   Some ( root_node )   =   root   { 
             q . push_back ( root_node ); 
         } 
         while   ! q . is_empty ()   { 
             let   n   =   q . len (); 
             let   mut   s :   i64   =   0 ; 
             for   _   in   0 .. n   { 
                 if   let   Some ( node )   =   q . pop_front ()   { 
                     let   node_borrow   =   node . borrow (); 
                     s   +=   node_borrow . val   as   i64 ; 
                     if   let   Some ( left )   =   node_borrow . left . clone ()   { 
                         q . push_back ( left ); 
                     } 
                     if   let   Some ( right )   =   node_borrow . right . clone ()   { 
                         q . push_back ( right ); 
                     } 
                 } 
             } 
             ans . push (( s   as   f64 )   /   ( n   as   f64 )); 
         } 
         ans 
     } 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 /** 
 * Definition for a binary tree node. 
 * function TreeNode(val, left, right) { 
 *     this.val = (val===undefined ? 0 : val) 
 *     this.left = (left===undefined ? null : left) 
 *     this.right = (right===undefined ? null : right) 
 * } 
 */ 
/** 
 * @param {TreeNode} root 
 * @return {number[]} 
 */ 
var   averageOfLevels   =   function   ( root )   { 
     const   q   =   [ root ]; 
     const   ans   =   []; 
     while   ( q . length )   { 
         const   n   =   q . length ; 
         const   nq   =   []; 
         let   s   =   0 ; 
         for   ( const   {   val ,   left ,   right   }   of   q )   { 
             s   +=   val ; 
             left   &&   nq . push ( left ); 
             right   &&   nq . push ( right ); 
         } 
         ans . push ( s   /   n ); 
         q . splice ( 0 ,   q . length ,   ... nq ); 
     } 
     return   ans ; 
}; 
 
 
 
 
方法二:DFS 
我们也可以使用深度优先搜索的方法,来计算每一层的平均值。
具体地,我们定义一个数组 \(s\) ,其中 \(s[i]\)  是一个二元组,表示第 \(i\)  层的节点值之和以及节点个数。我们对树进行深度优先搜索,对于每一个节点,我们将节点的值加到对应的 \(s[i]\)  中,并将节点个数加一。最后,对于每一个 \(s[i]\) ,我们计算平均值,加入答案数组中。
时间复杂度 \(O(n)\) ,空间复杂度 \(O(n)\) 。其中 \(n\)  是二叉树的节点个数。
Python3 Java C++ Go JavaScript 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 # Definition for a binary tree node. 
# class TreeNode: 
#     def __init__(self, val=0, left=None, right=None): 
#         self.val = val 
#         self.left = left 
#         self.right = right 
class   Solution : 
    def   averageOfLevels ( self ,  root :  Optional [ TreeNode ])  ->  List [ float ]: 
        def   dfs ( root ,  i ): 
            if  root  is  None : 
                return 
            if  len ( s )  ==  i : 
                s . append ([ root . val ,  1 ]) 
            else : 
                s [ i ][ 0 ]  +=  root . val 
                s [ i ][ 1 ]  +=  1 
            dfs ( root . left ,  i  +  1 ) 
            dfs ( root . right ,  i  +  1 ) 
        s  =  [] 
        dfs ( root ,  0 ) 
        return  [ a  /  b  for  a ,  b  in  s ] 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 /** 
 * Definition for a binary tree node. 
 * public class TreeNode { 
 *     int val; 
 *     TreeNode left; 
 *     TreeNode right; 
 *     TreeNode() {} 
 *     TreeNode(int val) { this.val = val; } 
 *     TreeNode(int val, TreeNode left, TreeNode right) { 
 *         this.val = val; 
 *         this.left = left; 
 *         this.right = right; 
 *     } 
 * } 
 */ 
class  Solution   { 
     private   List < Long >   s   =   new   ArrayList <> (); 
     private   List < Integer >   cnt   =   new   ArrayList <> (); 
     public   List < Double >   averageOfLevels ( TreeNode   root )   { 
         dfs ( root ,   0 ); 
         List < Double >   ans   =   new   ArrayList <> (); 
         for   ( int   i   =   0 ;   i   <   s . size ();   ++ i )   { 
             ans . add ( s . get ( i )   *   1.0   /   cnt . get ( i )); 
         } 
         return   ans ; 
     } 
     private   void   dfs ( TreeNode   root ,   int   i )   { 
         if   ( root   ==   null )   { 
             return ; 
         } 
         if   ( s . size ()   ==   i )   { 
             s . add (( long )   root . val ); 
             cnt . add ( 1 ); 
         }   else   { 
             s . set ( i ,   s . get ( i )   +   root . val ); 
             cnt . set ( i ,   cnt . get ( i )   +   1 ); 
         } 
         dfs ( root . left ,   i   +   1 ); 
         dfs ( root . right ,   i   +   1 ); 
     } 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 /** 
 * Definition for a binary tree node. 
 * struct TreeNode { 
 *     int val; 
 *     TreeNode *left; 
 *     TreeNode *right; 
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} 
 * }; 
 */ 
using   ll   =   long   long ; 
class   Solution   { 
public : 
     vector < ll >   s ; 
     vector < int >   cnt ; 
     vector < double >   averageOfLevels ( TreeNode *   root )   { 
         dfs ( root ,   0 ); 
         vector < double >   ans ( s . size ()); 
         for   ( int   i   =   0 ;   i   <   s . size ();   ++ i )   { 
             ans [ i ]   =   ( s [ i ]   *   1.0   /   cnt [ i ]); 
         } 
         return   ans ; 
     } 
     void   dfs ( TreeNode *   root ,   int   i )   { 
         if   ( ! root )   return ; 
         if   ( s . size ()   ==   i )   { 
             s . push_back ( root -> val ); 
             cnt . push_back ( 1 ); 
         }   else   { 
             s [ i ]   +=   root -> val ; 
             cnt [ i ] ++ ; 
         } 
         dfs ( root -> left ,   i   +   1 ); 
         dfs ( root -> right ,   i   +   1 ); 
     } 
}; 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 /** 
 * Definition for a binary tree node. 
 * type TreeNode struct { 
 *     Val int 
 *     Left *TreeNode 
 *     Right *TreeNode 
 * } 
 */ 
func   averageOfLevels ( root   * TreeNode )   [] float64   { 
     s   :=   [] int {} 
     cnt   :=   [] int {} 
     var   dfs   func ( root   * TreeNode ,   i   int ) 
     dfs   =   func ( root   * TreeNode ,   i   int )   { 
         if   root   ==   nil   { 
             return 
         } 
         if   len ( s )   ==   i   { 
             s   =   append ( s ,   root . Val ) 
             cnt   =   append ( cnt ,   1 ) 
         }   else   { 
             s [ i ]   +=   root . Val 
             cnt [ i ] ++ 
         } 
         dfs ( root . Left ,   i + 1 ) 
         dfs ( root . Right ,   i + 1 ) 
     } 
     dfs ( root ,   0 ) 
     ans   :=   [] float64 {} 
     for   i ,   t   :=   range   s   { 
         ans   =   append ( ans ,   float64 ( t ) / float64 ( cnt [ i ])) 
     } 
     return   ans 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 /** 
 * Definition for a binary tree node. 
 * function TreeNode(val, left, right) { 
 *     this.val = (val===undefined ? 0 : val) 
 *     this.left = (left===undefined ? null : left) 
 *     this.right = (right===undefined ? null : right) 
 * } 
 */ 
/** 
 * @param {TreeNode} root 
 * @return {number[]} 
 */ 
var   averageOfLevels   =   function   ( root )   { 
     const   s   =   []; 
     const   cnt   =   []; 
     function   dfs ( root ,   i )   { 
         if   ( ! root )   { 
             return ; 
         } 
         if   ( s . length   ==   i )   { 
             s . push ( root . val ); 
             cnt . push ( 1 ); 
         }   else   { 
             s [ i ]   +=   root . val ; 
             cnt [ i ] ++ ; 
         } 
         dfs ( root . left ,   i   +   1 ); 
         dfs ( root . right ,   i   +   1 ); 
     } 
     dfs ( root ,   0 ); 
     return   s . map (( v ,   i )   =>   v   /   cnt [ i ]); 
};