二叉树 
      
    
      
      
      
        树 
      
    
      
      
      
        深度优先搜索 
      
    
   
  
    
      
       
     
  
  
    
      
    
    
      
       
     
  
题目描述 
给你一棵二叉树的根节点,返回该树的 直径  。
二叉树的 直径  是指树中任意两个节点之间最长路径的 长度  。这条路径可能经过也可能不经过根节点 root 。
两节点之间路径的 长度  由它们之间边数表示。
 
示例 1: 
输入: root = [1,2,3,4,5]
输出: 3
解释: 3 ,取路径 [4,2,1,3] 或 [5,2,1,3] 的长度。
 
示例 2: 
输入: root = [1,2]
输出: 1
 
 
提示: 
    树中节点数目在范围 [1, 104 ] 内 
    -100 <= Node.val <= 100 
 
解法 
方法一:枚举 + DFS 
我们可以枚举二叉树的每个节点,以该节点为根节点,计算其左右子树的最大深度 \(\textit{l}\)  和 \(\textit{r}\) ,则该节点的直径为 \(\textit{l} + \textit{r}\) 。取所有节点的直径的最大值即为二叉树的直径。
时间复杂度 \(O(n)\) ,空间复杂度 \(O(n)\) 。其中 \(n\)  为二叉树的节点个数。
Python3 Java C++ Go TypeScript Rust JavaScript C# C 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 # Definition for a binary tree node. 
# class TreeNode: 
#     def __init__(self, val=0, left=None, right=None): 
#         self.val = val 
#         self.left = left 
#         self.right = right 
class   Solution : 
    def   diameterOfBinaryTree ( self ,  root :  TreeNode )  ->  int : 
        def   dfs ( root ): 
            if  root  is  None : 
                return  0 
            nonlocal  ans 
            left ,  right  =  dfs ( root . left ),  dfs ( root . right ) 
            ans  =  max ( ans ,  left  +  right ) 
            return  1  +  max ( left ,  right ) 
        ans  =  0 
        dfs ( root ) 
        return  ans 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 /** 
 * Definition for a binary tree node. 
 * public class TreeNode { 
 *     int val; 
 *     TreeNode left; 
 *     TreeNode right; 
 *     TreeNode() {} 
 *     TreeNode(int val) { this.val = val; } 
 *     TreeNode(int val, TreeNode left, TreeNode right) { 
 *         this.val = val; 
 *         this.left = left; 
 *         this.right = right; 
 *     } 
 * } 
 */ 
class  Solution   { 
     private   int   ans ; 
     public   int   diameterOfBinaryTree ( TreeNode   root )   { 
         dfs ( root ); 
         return   ans ; 
     } 
     private   int   dfs ( TreeNode   root )   { 
         if   ( root   ==   null )   { 
             return   0 ; 
         } 
         int   l   =   dfs ( root . left ); 
         int   r   =   dfs ( root . right ); 
         ans   =   Math . max ( ans ,   l   +   r ); 
         return   1   +   Math . max ( l ,   r ); 
     } 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 /** 
 * Definition for a binary tree node. 
 * struct TreeNode { 
 *     int val; 
 *     TreeNode *left; 
 *     TreeNode *right; 
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} 
 * }; 
 */ 
class   Solution   { 
public : 
     int   diameterOfBinaryTree ( TreeNode *   root )   { 
         int   ans   =   0 ; 
         auto   dfs   =   [ & ]( this   auto &&   dfs ,   TreeNode *   root )   ->   int   { 
             if   ( ! root )   { 
                 return   0 ; 
             } 
             int   l   =   dfs ( root -> left ); 
             int   r   =   dfs ( root -> right ); 
             ans   =   max ( ans ,   l   +   r ); 
             return   1   +   max ( l ,   r ); 
         }; 
         dfs ( root ); 
         return   ans ; 
     } 
}; 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 /** 
 * Definition for a binary tree node. 
 * type TreeNode struct { 
 *     Val int 
 *     Left *TreeNode 
 *     Right *TreeNode 
 * } 
 */ 
func   diameterOfBinaryTree ( root   * TreeNode )   ( ans   int )   { 
     var   dfs   func ( root   * TreeNode )   int 
     dfs   =   func ( root   * TreeNode )   int   { 
         if   root   ==   nil   { 
             return   0 
         } 
         l ,   r   :=   dfs ( root . Left ),   dfs ( root . Right ) 
         ans   =   max ( ans ,   l + r ) 
         return   1   +   max ( l ,   r ) 
     } 
     dfs ( root ) 
     return 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 /** 
 * Definition for a binary tree node. 
 * class TreeNode { 
 *     val: number 
 *     left: TreeNode | null 
 *     right: TreeNode | null 
 *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) { 
 *         this.val = (val===undefined ? 0 : val) 
 *         this.left = (left===undefined ? null : left) 
 *         this.right = (right===undefined ? null : right) 
 *     } 
 * } 
 */ 
function   diameterOfBinaryTree ( root :   TreeNode   |   null ) :   number   { 
     let   ans   =   0 ; 
     const   dfs   =   ( root :   TreeNode   |   null ) :   number   =>   { 
         if   ( ! root )   { 
             return   0 ; 
         } 
         const   [ l ,   r ]   =   [ dfs ( root . left ),   dfs ( root . right )]; 
         ans   =   Math . max ( ans ,   l   +   r ); 
         return   1   +   Math . max ( l ,   r ); 
     }; 
     dfs ( root ); 
     return   ans ; 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 // Definition for a binary tree node. 
// #[derive(Debug, PartialEq, Eq)] 
// pub struct TreeNode { 
//   pub val: i32, 
//   pub left: Option<Rc<RefCell<TreeNode>>>, 
//   pub right: Option<Rc<RefCell<TreeNode>>>, 
// } 
// 
// impl TreeNode { 
//   #[inline] 
//   pub fn new(val: i32) -> Self { 
//     TreeNode { 
//       val, 
//       left: None, 
//       right: None 
//     } 
//   } 
// } 
use   std :: cell :: RefCell ; 
use   std :: rc :: Rc ; 
impl   Solution   { 
     pub   fn   diameter_of_binary_tree ( root :   Option < Rc < RefCell < TreeNode >>> )   ->   i32   { 
         let   mut   ans   =   0 ; 
         fn   dfs ( root :   Option < Rc < RefCell < TreeNode >>> ,   ans :   & mut   i32 )   ->   i32   { 
             match   root   { 
                 Some ( node )   =>   { 
                     let   node   =   node . borrow (); 
                     let   l   =   dfs ( node . left . clone (),   ans ); 
                     let   r   =   dfs ( node . right . clone (),   ans ); 
                     * ans   =   ( * ans ). max ( l   +   r ); 
                     1   +   l . max ( r ) 
                 } 
                 None   =>   0 , 
             } 
         } 
         dfs ( root ,   & mut   ans ); 
         ans 
     } 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 /** 
 * Definition for a binary tree node. 
 * function TreeNode(val, left, right) { 
 *     this.val = (val===undefined ? 0 : val) 
 *     this.left = (left===undefined ? null : left) 
 *     this.right = (right===undefined ? null : right) 
 * } 
 */ 
/** 
 * @param {TreeNode} root 
 * @return {number} 
 */ 
var   diameterOfBinaryTree   =   function   ( root )   { 
     let   ans   =   0 ; 
     const   dfs   =   root   =>   { 
         if   ( ! root )   { 
             return   0 ; 
         } 
         const   [ l ,   r ]   =   [ dfs ( root . left ),   dfs ( root . right )]; 
         ans   =   Math . max ( ans ,   l   +   r ); 
         return   1   +   Math . max ( l ,   r ); 
     }; 
     dfs ( root ); 
     return   ans ; 
}; 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 /** 
 * Definition for a binary tree node. 
 * public class TreeNode { 
 *     public int val; 
 *     public TreeNode left; 
 *     public TreeNode right; 
 *     public TreeNode(int val=0, TreeNode left=null, TreeNode right=null) { 
 *         this.val = val; 
 *         this.left = left; 
 *         this.right = right; 
 *     } 
 * } 
 */ 
public   class   Solution   { 
     private   int   ans ; 
     public   int   DiameterOfBinaryTree ( TreeNode   root )   { 
         dfs ( root ); 
         return   ans ; 
     } 
     private   int   dfs ( TreeNode   root )   { 
         if   ( root   ==   null )   { 
             return   0 ; 
         } 
         int   l   =   dfs ( root . left ); 
         int   r   =   dfs ( root . right ); 
         ans   =   Math . Max ( ans ,   l   +   r ); 
         return   1   +   Math . Max ( l ,   r ); 
     } 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 /** 
 * Definition for a binary tree node. 
 * struct TreeNode { 
 *     int val; 
 *     struct TreeNode *left; 
 *     struct TreeNode *right; 
 * }; 
 */ 
int   dfs ( struct   TreeNode *   root ,   int *   ans )   { 
     if   ( root   ==   NULL )   { 
         return   0 ; 
     } 
     int   l   =   dfs ( root -> left ,   ans ); 
     int   r   =   dfs ( root -> right ,   ans ); 
     if   ( l   +   r   >   * ans )   { 
         * ans   =   l   +   r ; 
     } 
     return   1   +   ( l   >   r   ?   l   :   r ); 
} 
int   diameterOfBinaryTree ( struct   TreeNode *   root )   { 
     int   ans   =   0 ; 
     dfs ( root ,   & ans ); 
     return   ans ; 
} 
 
 
 
 
  
  
  
    
    
    
    
      
  
    
      
  
     
   
  GitHub