二叉树 
      
    
      
      
      
        哈希表 
      
    
      
      
      
        树 
      
    
      
      
      
        深度优先搜索 
      
    
   
  
    
      
       
     
  
  
    
      
    
    
      
       
     
  
题目描述 
给你一个二叉树的根结点 root ,请返回出现次数最多的子树元素和。如果有多个元素出现的次数相同,返回所有出现次数最多的子树元素和(不限顺序)。
一个结点的 「子树元素和」  定义为以该结点为根的二叉树上所有结点的元素之和(包括结点本身)。
 
示例 1: 
输入:  root = [5,2,-3]
输出:  [2,-3,4]
 
示例 2: 
输入:  root = [5,2,-5]
输出:  [2]
 
 
提示: 
    节点数在 [1, 104 ] 范围内 
    -105  <= Node.val <= 105  
 
解法 
方法一:哈希表 + DFS 
我们可以使用一个哈希表 \(\textit{cnt}\)  记录每个子树元素和出现的次数,然后使用深度优先搜索遍历整棵树,统计每个子树的元素和,并更新 \(\textit{cnt}\) 。
最后,我们遍历 \(\textit{cnt}\) ,找到所有出现次数最多的子树元素和。
时间复杂度 \(O(n)\) ,空间复杂度 \(O(n)\) 。其中 \(n\)  为二叉树的节点个数。
Python3 Java C++ Go TypeScript Rust 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 # Definition for a binary tree node. 
# class TreeNode: 
#     def __init__(self, val=0, left=None, right=None): 
#         self.val = val 
#         self.left = left 
#         self.right = right 
class   Solution : 
    def   findFrequentTreeSum ( self ,  root :  Optional [ TreeNode ])  ->  List [ int ]: 
        def   dfs ( root :  Optional [ TreeNode ])  ->  int : 
            if  root  is  None : 
                return  0 
            l ,  r  =  dfs ( root . left ),  dfs ( root . right ) 
            s  =  l  +  r  +  root . val 
            cnt [ s ]  +=  1 
            return  s 
        cnt  =  Counter () 
        dfs ( root ) 
        mx  =  max ( cnt . values ()) 
        return  [ k  for  k ,  v  in  cnt . items ()  if  v  ==  mx ] 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 /** 
 * Definition for a binary tree node. 
 * public class TreeNode { 
 *     int val; 
 *     TreeNode left; 
 *     TreeNode right; 
 *     TreeNode() {} 
 *     TreeNode(int val) { this.val = val; } 
 *     TreeNode(int val, TreeNode left, TreeNode right) { 
 *         this.val = val; 
 *         this.left = left; 
 *         this.right = right; 
 *     } 
 * } 
 */ 
class  Solution   { 
     private   Map < Integer ,   Integer >   cnt   =   new   HashMap <> (); 
     private   int   mx ; 
     public   int []   findFrequentTreeSum ( TreeNode   root )   { 
         dfs ( root ); 
         List < Integer >   ans   =   new   ArrayList <> (); 
         for   ( var   e   :   cnt . entrySet ())   { 
             if   ( e . getValue ()   ==   mx )   { 
                 ans . add ( e . getKey ()); 
             } 
         } 
         return   ans . stream (). mapToInt ( i   ->   i ). toArray (); 
     } 
     private   int   dfs ( TreeNode   root )   { 
         if   ( root   ==   null )   { 
             return   0 ; 
         } 
         int   s   =   root . val   +   dfs ( root . left )   +   dfs ( root . right ); 
         mx   =   Math . max ( mx ,   cnt . merge ( s ,   1 ,   Integer :: sum )); 
         return   s ; 
     } 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 /** 
 * Definition for a binary tree node. 
 * struct TreeNode { 
 *     int val; 
 *     TreeNode *left; 
 *     TreeNode *right; 
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} 
 * }; 
 */ 
class   Solution   { 
public : 
     vector < int >   findFrequentTreeSum ( TreeNode *   root )   { 
         unordered_map < int ,   int >   cnt ; 
         int   mx   =   0 ; 
         function < int ( TreeNode * ) >   dfs   =   [ & ]( TreeNode *   root )   ->   int   { 
             if   ( ! root )   { 
                 return   0 ; 
             } 
             int   s   =   root -> val   +   dfs ( root -> left )   +   dfs ( root -> right ); 
             mx   =   max ( mx ,   ++ cnt [ s ]); 
             return   s ; 
         }; 
         dfs ( root ); 
         vector < int >   ans ; 
         for   ( const   auto &   [ k ,   v ]   :   cnt )   { 
             if   ( v   ==   mx )   { 
                 ans . push_back ( k ); 
             } 
         } 
         return   ans ; 
     } 
}; 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 /** 
 * Definition for a binary tree node. 
 * type TreeNode struct { 
 *     Val int 
 *     Left *TreeNode 
 *     Right *TreeNode 
 * } 
 */ 
func   findFrequentTreeSum ( root   * TreeNode )   ( ans   [] int )   { 
     cnt   :=   map [ int ] int {} 
     var   mx   int 
     var   dfs   func ( * TreeNode )   int 
     dfs   =   func ( root   * TreeNode )   int   { 
         if   root   ==   nil   { 
             return   0 
         } 
         s   :=   root . Val   +   dfs ( root . Left )   +   dfs ( root . Right ) 
         cnt [ s ] ++ 
         mx   =   max ( mx ,   cnt [ s ]) 
         return   s 
     } 
     dfs ( root ) 
     for   k ,   v   :=   range   cnt   { 
         if   v   ==   mx   { 
             ans   =   append ( ans ,   k ) 
         } 
     } 
     return 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 /** 
 * Definition for a binary tree node. 
 * class TreeNode { 
 *     val: number 
 *     left: TreeNode | null 
 *     right: TreeNode | null 
 *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) { 
 *         this.val = (val===undefined ? 0 : val) 
 *         this.left = (left===undefined ? null : left) 
 *         this.right = (right===undefined ? null : right) 
 *     } 
 * } 
 */ 
function   findFrequentTreeSum ( root :   TreeNode   |   null ) :   number []   { 
     const   cnt   =   new   Map < number ,   number > (); 
     let   mx   =   0 ; 
     const   dfs   =   ( root :   TreeNode   |   null ) :   number   =>   { 
         if   ( ! root )   { 
             return   0 ; 
         } 
         const   {   val ,   left ,   right   }   =   root ; 
         const   s   =   val   +   dfs ( left )   +   dfs ( right ); 
         cnt . set ( s ,   ( cnt . get ( s )   ??   0 )   +   1 ); 
         mx   =   Math . max ( mx ,   cnt . get ( s ) ! ); 
         return   s ; 
     }; 
     dfs ( root ); 
     return   Array . from ( cnt . entries ()) 
         . filter (([ _ ,   c ])   =>   c   ===   mx ) 
         . map (([ s ,   _ ])   =>   s ); 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 // Definition for a binary tree node. 
// #[derive(Debug, PartialEq, Eq)] 
// pub struct TreeNode { 
//   pub val: i32, 
//   pub left: Option<Rc<RefCell<TreeNode>>>, 
//   pub right: Option<Rc<RefCell<TreeNode>>>, 
// } 
// 
// impl TreeNode { 
//   #[inline] 
//   pub fn new(val: i32) -> Self { 
//     TreeNode { 
//       val, 
//       left: None, 
//       right: None 
//     } 
//   } 
// } 
use   std :: cell :: RefCell ; 
use   std :: collections :: HashMap ; 
use   std :: rc :: Rc ; 
impl   Solution   { 
     pub   fn   find_frequent_tree_sum ( root :   Option < Rc < RefCell < TreeNode >>> )   ->   Vec < i32 >   { 
         fn   dfs ( root :   Option < Rc < RefCell < TreeNode >>> ,   cnt :   & mut   HashMap < i32 ,   i32 > )   ->   i32   { 
             if   let   Some ( node )   =   root   { 
                 let   l   =   dfs ( node . borrow (). left . clone (),   cnt ); 
                 let   r   =   dfs ( node . borrow (). right . clone (),   cnt ); 
                 let   s   =   l   +   r   +   node . borrow (). val ; 
                 * cnt . entry ( s ). or_insert ( 0 )   +=   1 ; 
                 s 
             }   else   { 
                 0 
             } 
         } 
         let   mut   cnt   =   HashMap :: new (); 
         dfs ( root ,   & mut   cnt ); 
         let   mx   =   cnt . values (). cloned (). max (). unwrap_or ( 0 ); 
         cnt . into_iter () 
             . filter ( |& ( _ ,   v ) |   v   ==   mx ) 
             . map ( | ( k ,   _ ) |   k ) 
             . collect () 
     } 
} 
 
 
 
 
  
  
  
    
    
    
    
      
  
    
      
  
     
   
  GitHub