二叉树
树
深度优先搜索
题目描述
给定一个二叉树的根节点 root
,和一个整数 targetSum
,求该二叉树里节点值之和等于 targetSum
的 路径 的数目。
路径 不需要从根节点开始,也不需要在叶子节点结束,但是路径方向必须是向下的(只能从父节点到子节点)。
示例 1:
输入: root = [10,5,-3,3,2,null,11,3,-2,null,1], targetSum = 8
输出: 3
解释: 和等于 8 的路径有 3 条,如图所示。
示例 2:
输入: root = [5,4,8,11,null,13,4,7,2,null,null,5,1], targetSum = 22
输出: 3
提示:
二叉树的节点个数的范围是 [0,1000]
-109 <= Node.val <= 109
-1000 <= targetSum <= 1000
解法
方法一:哈希表 + 前缀和 + 递归
我们可以运用前缀和的思想,对二叉树进行递归遍历,同时用哈希表 \(\textit{cnt}\) 统计从根节点到当前节点的路径上各个前缀和出现的次数。
我们设计一个递归函数 \(\textit{dfs(node, s)}\) ,表示当前遍历到的节点为 \(\textit{node}\) ,从根节点到当前节点的路径上的前缀和为 \(s\) 。函数的返回值是统计以 \(\textit{node}\) 节点及其子树节点作为路径终点且路径和为 \(\textit{targetSum}\) 的路径数目。那么答案就是 \(\textit{dfs(root, 0)}\) 。
函数 \(\textit{dfs(node, s)}\) 的递归过程如下:
如果当前节点 \(\textit{node}\) 为空,则返回 \(0\) 。
计算从根节点到当前节点的路径上的前缀和 \(s\) 。
用 \(\textit{cnt}[s - \textit{targetSum}]\) 表示以当前节点为路径终点且路径和为 \(\textit{targetSum}\) 的路径数目,其中 \(\textit{cnt}[s - \textit{targetSum}]\) 即为 \(\textit{cnt}\) 中前缀和为 \(s - \textit{targetSum}\) 的个数。
将前缀和 \(s\) 的计数值加 \(1\) ,即 \(\textit{cnt}[s] = \textit{cnt}[s] + 1\) 。
递归地遍历当前节点的左右子节点,即调用函数 \(\textit{dfs(node.left, s)}\) 和 \(\textit{dfs(node.right, s)}\) ,并将它们的返回值相加。
在返回值计算完成以后,需要将当前节点的前缀和 \(s\) 的计数值减 \(1\) ,即执行 \(\textit{cnt}[s] = \textit{cnt}[s] - 1\) 。
最后返回答案。
时间复杂度 \(O(n)\) ,空间复杂度 \(O(n)\) 。其中 \(n\) 是二叉树的节点个数。
Python3 Java C++ Go TypeScript Rust JavaScript C#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 # Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution :
def pathSum ( self , root : Optional [ TreeNode ], targetSum : int ) -> int :
def dfs ( node , s ):
if node is None :
return 0
s += node . val
ans = cnt [ s - targetSum ]
cnt [ s ] += 1
ans += dfs ( node . left , s )
ans += dfs ( node . right , s )
cnt [ s ] -= 1
return ans
cnt = Counter ({ 0 : 1 })
return dfs ( root , 0 )
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38 /**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private Map < Long , Integer > cnt = new HashMap <> ();
private int targetSum ;
public int pathSum ( TreeNode root , int targetSum ) {
cnt . put ( 0 L , 1 );
this . targetSum = targetSum ;
return dfs ( root , 0 );
}
private int dfs ( TreeNode node , long s ) {
if ( node == null ) {
return 0 ;
}
s += node . val ;
int ans = cnt . getOrDefault ( s - targetSum , 0 );
cnt . merge ( s , 1 , Integer :: sum );
ans += dfs ( node . left , s );
ans += dfs ( node . right , s );
cnt . merge ( s , - 1 , Integer :: sum );
return ans ;
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public :
int pathSum ( TreeNode * root , int targetSum ) {
unordered_map < long long , int > cnt ;
cnt [ 0 ] = 1 ;
auto dfs = [ & ]( this auto && dfs , TreeNode * node , long long s ) -> int {
if ( ! node ) {
return 0 ;
}
s += node -> val ;
int ans = cnt [ s - targetSum ];
++ cnt [ s ];
ans += dfs ( node -> left , s ) + dfs ( node -> right , s );
-- cnt [ s ];
return ans ;
};
return dfs ( root , 0 );
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 /**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func pathSum ( root * TreeNode , targetSum int ) int {
cnt := map [ int ] int { 0 : 1 }
var dfs func ( * TreeNode , int ) int
dfs = func ( node * TreeNode , s int ) int {
if node == nil {
return 0
}
s += node . Val
ans := cnt [ s - targetSum ]
cnt [ s ] ++
ans += dfs ( node . Left , s ) + dfs ( node . Right , s )
cnt [ s ] --
return ans
}
return dfs ( root , 0 )
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 /**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function pathSum ( root : TreeNode | null , targetSum : number ) : number {
const cnt : Map < number , number > = new Map ();
const dfs = ( node : TreeNode | null , s : number ) : number => {
if ( ! node ) {
return 0 ;
}
s += node . val ;
let ans = cnt . get ( s - targetSum ) ?? 0 ;
cnt . set ( s , ( cnt . get ( s ) ?? 0 ) + 1 );
ans += dfs ( node . left , s );
ans += dfs ( node . right , s );
cnt . set ( s , ( cnt . get ( s ) ?? 0 ) - 1 );
return ans ;
};
cnt . set ( 0 , 1 );
return dfs ( root , 0 );
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44 // Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std :: rc :: Rc ;
use std :: cell :: RefCell ;
use std :: collections :: HashMap ;
impl Solution {
pub fn path_sum ( root : Option < Rc < RefCell < TreeNode >>> , target_sum : i32 ) -> i32 {
let mut cnt = HashMap :: new ();
cnt . insert ( 0 , 1 );
fn dfs ( node : Option < Rc < RefCell < TreeNode >>> , s : i64 , target : i64 , cnt : & mut HashMap < i64 , i32 > ) -> i32 {
if let Some ( n ) = node {
let n = n . borrow ();
let s = s + n . val as i64 ;
let ans = cnt . get ( & ( s - target )). copied (). unwrap_or ( 0 );
* cnt . entry ( s ). or_insert ( 0 ) += 1 ;
let ans = ans + dfs ( n . left . clone (), s , target , cnt ) + dfs ( n . right . clone (), s , target , cnt );
* cnt . get_mut ( & s ). unwrap () -= 1 ;
ans
} else {
0
}
}
dfs ( root , 0 , target_sum as i64 , & mut cnt )
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 /**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @param {number} targetSum
* @return {number}
*/
var pathSum = function ( root , targetSum ) {
const cnt = new Map ();
const dfs = ( node , s ) => {
if ( ! node ) {
return 0 ;
}
s += node . val ;
let ans = cnt . get ( s - targetSum ) || 0 ;
cnt . set ( s , ( cnt . get ( s ) || 0 ) + 1 );
ans += dfs ( node . left , s );
ans += dfs ( node . right , s );
cnt . set ( s , cnt . get ( s ) - 1 );
return ans ;
};
cnt . set ( 0 , 1 );
return dfs ( root , 0 );
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34 /**
* Definition for a binary tree node.
* public class TreeNode {
* public int val;
* public TreeNode left;
* public TreeNode right;
* public TreeNode(int val=0, TreeNode left=null, TreeNode right=null) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
public class Solution {
public int PathSum ( TreeNode root , int targetSum ) {
Dictionary < long , int > cnt = new Dictionary < long , int > ();
int Dfs ( TreeNode node , long s ) {
if ( node == null ) {
return 0 ;
}
s += node . val ;
int ans = cnt . GetValueOrDefault ( s - targetSum , 0 );
cnt [ s ] = cnt . GetValueOrDefault ( s , 0 ) + 1 ;
ans += Dfs ( node . left , s );
ans += Dfs ( node . right , s );
cnt [ s ] -- ;
return ans ;
}
cnt [ 0 ] = 1 ;
return Dfs ( root , 0 );
}
}
GitHub