跳转至

3583. 统计特殊三元组

题目描述

给你一个整数数组 nums

特殊三元组 定义为满足以下条件的下标三元组 (i, j, k)

  • 0 <= i < j < k < n,其中 n = nums.length
  • nums[i] == nums[j] * 2
  • nums[k] == nums[j] * 2

返回数组中 特殊三元组 的总数。

由于答案可能非常大,请返回结果对 109 + 7 取余数后的值。

 

示例 1:

输入: nums = [6,3,6]

输出: 1

解释:

唯一的特殊三元组是 (i, j, k) = (0, 1, 2),其中:

  • nums[0] = 6, nums[1] = 3, nums[2] = 6
  • nums[0] = nums[1] * 2 = 3 * 2 = 6
  • nums[2] = nums[1] * 2 = 3 * 2 = 6

示例 2:

输入: nums = [0,1,0,0]

输出: 1

解释:

唯一的特殊三元组是 (i, j, k) = (0, 2, 3),其中:

  • nums[0] = 0, nums[2] = 0, nums[3] = 0
  • nums[0] = nums[2] * 2 = 0 * 2 = 0
  • nums[3] = nums[2] * 2 = 0 * 2 = 0

示例 3:

输入: nums = [8,4,2,8,4]

输出: 2

解释:

共有两个特殊三元组:

  • (i, j, k) = (0, 1, 3)
    • nums[0] = 8, nums[1] = 4, nums[3] = 8
    • nums[0] = nums[1] * 2 = 4 * 2 = 8
    • nums[3] = nums[1] * 2 = 4 * 2 = 8
  • (i, j, k) = (1, 2, 4)
    • nums[1] = 4, nums[2] = 2, nums[4] = 4
    • nums[1] = nums[2] * 2 = 2 * 2 = 4
    • nums[4] = nums[2] * 2 = 2 * 2 = 4

 

提示:

  • 3 <= n == nums.length <= 105
  • 0 <= nums[i] <= 105

解法

方法一:枚举中间数字 + 哈希表

我们可以枚举中间数字 \(\textit{nums}[j]\),用两个哈希表 \(\textit{left}\)\(\textit{right}\) 分别记录 \(\textit{nums}[j]\) 左侧和右侧的数字出现次数。

我们首先将所有数字加入 \(\textit{right}\) 中,然后从左到右遍历每个数字 \(\textit{nums}[j]\),在遍历过程中:

  1. \(\textit{nums}[j]\)\(\textit{right}\) 中移除。
  2. 计算 \(\textit{nums}[j]\) 左侧的数字 \(\textit{nums}[i] = \textit{nums}[j] * 2\) 的出现次数,记为 \(\textit{left}[\textit{nums}[j] * 2]\)
  3. 计算 \(\textit{nums}[j]\) 右侧的数字 \(\textit{nums}[k] = \textit{nums}[j] * 2\) 的出现次数,记为 \(\textit{right}[\textit{nums}[j] * 2]\)
  4. \(\textit{left}[\textit{nums}[j] * 2]\)\(\textit{right}[\textit{nums}[j] * 2]\) 相乘,得到以 \(\textit{nums}[j]\) 为中间数字的特殊三元组数量,并将结果累加到答案中。
  5. \(\textit{nums}[j]\) 加入 \(\textit{left}\) 中。

最后返回答案。

时间复杂度为 \(O(n)\),空间复杂度为 \(O(n)\),其中 \(n\) 是数组 \(\textit{nums}\) 的长度。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
class Solution:
    def specialTriplets(self, nums: List[int]) -> int:
        left = Counter()
        right = Counter(nums)
        ans = 0
        mod = 10**9 + 7
        for x in nums:
            right[x] -= 1
            ans = (ans + left[x * 2] * right[x * 2] % mod) % mod
            left[x] += 1
        return ans
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
class Solution {
    public int specialTriplets(int[] nums) {
        Map<Integer, Integer> left = new HashMap<>();
        Map<Integer, Integer> right = new HashMap<>();
        for (int x : nums) {
            right.merge(x, 1, Integer::sum);
        }
        long ans = 0;
        final int mod = (int) 1e9 + 7;
        for (int x : nums) {
            right.merge(x, -1, Integer::sum);
            ans = (ans + 1L * left.getOrDefault(x * 2, 0) * right.getOrDefault(x * 2, 0) % mod)
                % mod;
            left.merge(x, 1, Integer::sum);
        }
        return (int) ans;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
class Solution {
public:
    int specialTriplets(vector<int>& nums) {
        unordered_map<int, int> left, right;
        for (int x : nums) {
            right[x]++;
        }
        long long ans = 0;
        const int mod = 1e9 + 7;
        for (int x : nums) {
            right[x]--;
            ans = (ans + 1LL * left[x * 2] * right[x * 2] % mod) % mod;
            left[x]++;
        }
        return (int) ans;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
func specialTriplets(nums []int) int {
    left := make(map[int]int)
    right := make(map[int]int)
    for _, x := range nums {
        right[x]++
    }
    ans := int64(0)
    mod := int64(1e9 + 7)
    for _, x := range nums {
        right[x]--
        ans = (ans + int64(left[x*2])*int64(right[x*2])%mod) % mod
        left[x]++
    }
    return int(ans)
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
function specialTriplets(nums: number[]): number {
    const left = new Map<number, number>();
    const right = new Map<number, number>();
    for (const x of nums) {
        right.set(x, (right.get(x) || 0) + 1);
    }
    let ans = 0;
    const mod = 1e9 + 7;
    for (const x of nums) {
        right.set(x, (right.get(x) || 0) - 1);
        const lx = left.get(x * 2) || 0;
        const rx = right.get(x * 2) || 0;
        ans = (ans + ((lx * rx) % mod)) % mod;
        left.set(x, (left.get(x) || 0) + 1);
    }
    return ans;
}

评论