二叉搜索树 
      
    
      
      
      
        二叉树 
      
    
      
      
      
        动态规划 
      
    
      
      
      
        树 
      
    
      
      
      
        深度优先搜索 
      
    
   
  
    
      
       
     
  
  
    
      
    
    
      
       
     
  
题目描述 
给定一个二叉树,找到其中最大的二叉搜索树(BST)子树,并返回该子树 的大小。其中,最大指的是子树节点数最多的。
二叉搜索树(BST) 中的所有节点都具备以下属性:
    
    左子树的值小于其父(根)节点的值。
     
    
    右子树的值大于其父(根)节点的值。
     
 
注意: 子树必须包含其所有后代。
 
示例 1: 
输入: root = [10,5,15,1,8,null,7]
输出: 3
解释: 本例中最大的 BST 子树是高亮显示的子树。返回值是子树的大小,即 3 。 
示例 2: 
输入: root = [4,2,7,2,3,5,null,2,null,null,null,null,null,1]
输出: 2
 
 
提示: 
    树上节点数目的范围是 [0, 104 ] 
    -104  <= Node.val <= 104  
 
 
进阶:   你能想出 O(n) 时间复杂度的解法吗?
解法 
方法一 
Python3 Java C++ Go 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 # Definition for a binary tree node. 
# class TreeNode: 
#     def __init__(self, val=0, left=None, right=None): 
#         self.val = val 
#         self.left = left 
#         self.right = right 
class   Solution : 
    def   largestBSTSubtree ( self ,  root :  Optional [ TreeNode ])  ->  int : 
        def   dfs ( root ): 
            if  root  is  None : 
                return  inf ,  - inf ,  0 
            lmi ,  lmx ,  ln  =  dfs ( root . left ) 
            rmi ,  rmx ,  rn  =  dfs ( root . right ) 
            nonlocal  ans 
            if  lmx  <  root . val  <  rmi : 
                ans  =  max ( ans ,  ln  +  rn  +  1 ) 
                return  min ( lmi ,  root . val ),  max ( rmx ,  root . val ),  ln  +  rn  +  1 
            return  - inf ,  inf ,  0 
        ans  =  0 
        dfs ( root ) 
        return  ans 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 /** 
 * Definition for a binary tree node. 
 * public class TreeNode { 
 *     int val; 
 *     TreeNode left; 
 *     TreeNode right; 
 *     TreeNode() {} 
 *     TreeNode(int val) { this.val = val; } 
 *     TreeNode(int val, TreeNode left, TreeNode right) { 
 *         this.val = val; 
 *         this.left = left; 
 *         this.right = right; 
 *     } 
 * } 
 */ 
class  Solution   { 
     private   int   ans ; 
     public   int   largestBSTSubtree ( TreeNode   root )   { 
         ans   =   0 ; 
         dfs ( root ); 
         return   ans ; 
     } 
     private   int []   dfs ( TreeNode   root )   { 
         if   ( root   ==   null )   { 
             return   new   int []   { Integer . MAX_VALUE ,   Integer . MIN_VALUE ,   0 }; 
         } 
         int []   left   =   dfs ( root . left ); 
         int []   right   =   dfs ( root . right ); 
         if   ( left [ 1 ]   <   root . val   &&   root . val   <   right [ 0 ] )   { 
             ans   =   Math . max ( ans ,   left [ 2 ]   +   right [ 2 ]   +   1 ); 
             return   new   int []   { 
                 Math . min ( root . val ,   left [ 0 ] ),   Math . max ( root . val ,   right [ 1 ] ),   left [ 2 ]   +   right [ 2 ]   +   1 }; 
         } 
         return   new   int []   { Integer . MIN_VALUE ,   Integer . MAX_VALUE ,   0 }; 
     } 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 /** 
 * Definition for a binary tree node. 
 * struct TreeNode { 
 *     int val; 
 *     TreeNode *left; 
 *     TreeNode *right; 
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} 
 * }; 
 */ 
class   Solution   { 
public : 
     int   ans ; 
     int   largestBSTSubtree ( TreeNode *   root )   { 
         ans   =   0 ; 
         dfs ( root ); 
         return   ans ; 
     } 
     vector < int >   dfs ( TreeNode *   root )   { 
         if   ( ! root )   return   { INT_MAX ,   INT_MIN ,   0 }; 
         auto   left   =   dfs ( root -> left ); 
         auto   right   =   dfs ( root -> right ); 
         if   ( left [ 1 ]   <   root -> val   &&   root -> val   <   right [ 0 ])   { 
             ans   =   max ( ans ,   left [ 2 ]   +   right [ 2 ]   +   1 ); 
             return   { min ( root -> val ,   left [ 0 ]),   max ( root -> val ,   right [ 1 ]),   left [ 2 ]   +   right [ 2 ]   +   1 }; 
         } 
         return   { INT_MIN ,   INT_MAX ,   0 }; 
     } 
}; 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 /** 
 * Definition for a binary tree node. 
 * type TreeNode struct { 
 *     Val int 
 *     Left *TreeNode 
 *     Right *TreeNode 
 * } 
 */ 
func   largestBSTSubtree ( root   * TreeNode )   int   { 
     ans   :=   0 
     var   dfs   func ( root   * TreeNode )   [] int 
     dfs   =   func ( root   * TreeNode )   [] int   { 
         if   root   ==   nil   { 
             return   [] int { math . MaxInt32 ,   math . MinInt32 ,   0 } 
         } 
         left   :=   dfs ( root . Left ) 
         right   :=   dfs ( root . Right ) 
         if   left [ 1 ]   <   root . Val   &&   root . Val   <   right [ 0 ]   { 
             ans   =   max ( ans ,   left [ 2 ] + right [ 2 ] + 1 ) 
             return   [] int { min ( root . Val ,   left [ 0 ]),   max ( root . Val ,   right [ 1 ]),   left [ 2 ]   +   right [ 2 ]   +   1 } 
         } 
         return   [] int { math . MinInt32 ,   math . MaxInt32 ,   0 } 
     } 
     dfs ( root ) 
     return   ans 
} 
 
 
 
 
  
  
  
    
    
    
    
      
  
    
      
  
     
   
  GitHub