二叉搜索树 
      
    
      
      
      
        二叉树 
      
    
      
      
      
        双指针 
      
    
      
      
      
        堆(优先队列) 
      
    
      
      
      
        栈 
      
    
      
      
      
        树 
      
    
      
      
      
        深度优先搜索 
      
    
   
  
    
      
       
     
  
  
    
      
    
    
      
       
     
  
题目描述 
给定二叉搜索树的根 root 、一个目标值 target 和一个整数 k ,返回BST中最接近目标的 k 个值。你可以按 任意顺序  返回答案。
题目 保证  该二叉搜索树中只会存在一种 k 个值集合最接近 target
 
示例 1: 
输入:  root = [4,2,5,1,3],目标值 = 3.714286,且 k  = 2
输出:  [4,3] 
示例 2: 
输入:  root = [1], target = 0.000000, k = 1
输出:  [1]
 
 
提示: 
    二叉树的节点总数为 n 
    1 <= k <= n <= 104  
    0 <= Node.val <= 109  
    -109  <= target <= 109  
 
 
进阶: 假设该二叉搜索树是平衡的,请问您是否能在小于 O(n)( n = total nodes )的时间复杂度内解决该问题呢?
解法 
方法一 
Python3 Java C++ Go 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 # Definition for a binary tree node. 
# class TreeNode: 
#     def __init__(self, val=0, left=None, right=None): 
#         self.val = val 
#         self.left = left 
#         self.right = right 
class   Solution : 
    def   closestKValues ( self ,  root :  TreeNode ,  target :  float ,  k :  int )  ->  List [ int ]: 
        def   dfs ( root ): 
            if  root  is  None : 
                return 
            dfs ( root . left ) 
            if  len ( q )  <  k : 
                q . append ( root . val ) 
            else : 
                if  abs ( root . val  -  target )  >=  abs ( q [ 0 ]  -  target ): 
                    return 
                q . popleft () 
                q . append ( root . val ) 
            dfs ( root . right ) 
        q  =  deque () 
        dfs ( root ) 
        return  list ( q ) 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 /** 
 * Definition for a binary tree node. 
 * public class TreeNode { 
 *     int val; 
 *     TreeNode left; 
 *     TreeNode right; 
 *     TreeNode() {} 
 *     TreeNode(int val) { this.val = val; } 
 *     TreeNode(int val, TreeNode left, TreeNode right) { 
 *         this.val = val; 
 *         this.left = left; 
 *         this.right = right; 
 *     } 
 * } 
 */ 
class  Solution   { 
     private   List < Integer >   ans ; 
     private   double   target ; 
     private   int   k ; 
     public   List < Integer >   closestKValues ( TreeNode   root ,   double   target ,   int   k )   { 
         ans   =   new   LinkedList <> (); 
         this . target   =   target ; 
         this . k   =   k ; 
         dfs ( root ); 
         return   ans ; 
     } 
     private   void   dfs ( TreeNode   root )   { 
         if   ( root   ==   null )   { 
             return ; 
         } 
         dfs ( root . left ); 
         if   ( ans . size ()   <   k )   { 
             ans . add ( root . val ); 
         }   else   { 
             if   ( Math . abs ( root . val   -   target )   >=   Math . abs ( ans . get ( 0 )   -   target ))   { 
                 return ; 
             } 
             ans . remove ( 0 ); 
             ans . add ( root . val ); 
         } 
         dfs ( root . right ); 
     } 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 /** 
 * Definition for a binary tree node. 
 * struct TreeNode { 
 *     int val; 
 *     TreeNode *left; 
 *     TreeNode *right; 
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} 
 * }; 
 */ 
class   Solution   { 
public : 
     queue < int >   q ; 
     double   target ; 
     int   k ; 
     vector < int >   closestKValues ( TreeNode *   root ,   double   target ,   int   k )   { 
         this -> target   =   target ; 
         this -> k   =   k ; 
         dfs ( root ); 
         vector < int >   ans ; 
         while   ( ! q . empty ())   { 
             ans . push_back ( q . front ()); 
             q . pop (); 
         } 
         return   ans ; 
     } 
     void   dfs ( TreeNode *   root )   { 
         if   ( ! root )   return ; 
         dfs ( root -> left ); 
         if   ( q . size ()   <   k ) 
             q . push ( root -> val ); 
         else   { 
             if   ( abs ( root -> val   -   target )   >=   abs ( q . front ()   -   target ))   return ; 
             q . pop (); 
             q . push ( root -> val ); 
         } 
         dfs ( root -> right ); 
     } 
}; 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 /** 
 * Definition for a binary tree node. 
 * type TreeNode struct { 
 *     Val int 
 *     Left *TreeNode 
 *     Right *TreeNode 
 * } 
 */ 
func   closestKValues ( root   * TreeNode ,   target   float64 ,   k   int )   [] int   { 
     var   ans   [] int 
     var   dfs   func ( root   * TreeNode ) 
     dfs   =   func ( root   * TreeNode )   { 
         if   root   ==   nil   { 
             return 
         } 
         dfs ( root . Left ) 
         if   len ( ans )   <   k   { 
             ans   =   append ( ans ,   root . Val ) 
         }   else   { 
             if   math . Abs ( float64 ( root . Val ) - target )   >=   math . Abs ( float64 ( ans [ 0 ]) - target )   { 
                 return 
             } 
             ans   =   ans [ 1 :] 
             ans   =   append ( ans ,   root . Val ) 
         } 
         dfs ( root . Right ) 
     } 
     dfs ( root ) 
     return   ans 
} 
 
 
 
 
  
  
  
    
    
    
    
      
  
    
      
  
     
   
  GitHub