二叉树 
      
    
      
      
      
        回溯 
      
    
      
      
      
        字符串 
      
    
      
      
      
        树 
      
    
      
      
      
        深度优先搜索 
      
    
   
  
    
      
       
     
  
  
    
      
    
    
      
       
     
  
题目描述 
给你一个二叉树的根节点 root ,按 任意顺序  ,返回所有从根节点到叶子节点的路径。
叶子节点  是指没有子节点的节点。
 
示例 1: 
输入: root = [1,2,3,null,5]
输出: ["1->2->5","1->3"]
 
示例 2: 
输入: root = [1]
输出: ["1"]
 
 
提示: 
    树中节点的数目在范围 [1, 100] 内 
    -100 <= Node.val <= 100 
 
解法 
方法一:DFS 
我们可以使用深度优先搜索的方法遍历整棵二叉树,每一次我们将当前的节点添加到路径中。如果当前的节点是叶子节点,则我们将整个路径加入到答案中。否则我们继续递归遍历节点的孩子节点。最后当我们递归结束返回到当前节点时,我们需要将当前节点从路径中删除。
时间复杂度 \(O(n^2)\) ,空间复杂度 \(O(n)\) 。其中 \(n\)  是二叉树的节点数。
Python3 Java C++ Go TypeScript 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 # Definition for a binary tree node. 
# class TreeNode: 
#     def __init__(self, val=0, left=None, right=None): 
#         self.val = val 
#         self.left = left 
#         self.right = right 
class   Solution : 
    def   binaryTreePaths ( self ,  root :  Optional [ TreeNode ])  ->  List [ str ]: 
        def   dfs ( root :  Optional [ TreeNode ]): 
            if  root  is  None : 
                return 
            t . append ( str ( root . val )) 
            if  root . left  is  None  and  root . right  is  None : 
                ans . append ( "->" . join ( t )) 
            else : 
                dfs ( root . left ) 
                dfs ( root . right ) 
            t . pop () 
        ans  =  [] 
        t  =  [] 
        dfs ( root ) 
        return  ans 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 /** 
 * Definition for a binary tree node. 
 * public class TreeNode { 
 *     int val; 
 *     TreeNode left; 
 *     TreeNode right; 
 *     TreeNode() {} 
 *     TreeNode(int val) { this.val = val; } 
 *     TreeNode(int val, TreeNode left, TreeNode right) { 
 *         this.val = val; 
 *         this.left = left; 
 *         this.right = right; 
 *     } 
 * } 
 */ 
class  Solution   { 
     private   List < String >   ans   =   new   ArrayList <> (); 
     private   List < String >   t   =   new   ArrayList <> (); 
     public   List < String >   binaryTreePaths ( TreeNode   root )   { 
         dfs ( root ); 
         return   ans ; 
     } 
     private   void   dfs ( TreeNode   root )   { 
         if   ( root   ==   null )   { 
             return ; 
         } 
         t . add ( root . val   +   "" ); 
         if   ( root . left   ==   null   &&   root . right   ==   null )   { 
             ans . add ( String . join ( "->" ,   t )); 
         }   else   { 
             dfs ( root . left ); 
             dfs ( root . right ); 
         } 
         t . remove ( t . size ()   -   1 ); 
     } 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 /** 
 * Definition for a binary tree node. 
 * struct TreeNode { 
 *     int val; 
 *     TreeNode *left; 
 *     TreeNode *right; 
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} 
 * }; 
 */ 
class   Solution   { 
public : 
     vector < string >   binaryTreePaths ( TreeNode *   root )   { 
         vector < string >   ans ; 
         vector < string >   t ; 
         function < void ( TreeNode * ) >   dfs   =   [ & ]( TreeNode *   root )   { 
             if   ( ! root )   { 
                 return ; 
             } 
             t . push_back ( to_string ( root -> val )); 
             if   ( ! root -> left   &&   ! root -> right )   { 
                 ans . push_back ( join ( t )); 
             }   else   { 
                 dfs ( root -> left ); 
                 dfs ( root -> right ); 
             } 
             t . pop_back (); 
         }; 
         dfs ( root ); 
         return   ans ; 
     } 
     string   join ( vector < string >&   t ,   string   sep   =   "->" )   { 
         string   ans ; 
         for   ( int   i   =   0 ;   i   <   t . size ();   ++ i )   { 
             if   ( i   >   0 )   { 
                 ans   +=   sep ; 
             } 
             ans   +=   t [ i ]; 
         } 
         return   ans ; 
     } 
}; 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 /** 
 * Definition for a binary tree node. 
 * type TreeNode struct { 
 *     Val int 
 *     Left *TreeNode 
 *     Right *TreeNode 
 * } 
 */ 
func   binaryTreePaths ( root   * TreeNode )   ( ans   [] string )   { 
     t   :=   [] string {} 
     var   dfs   func ( * TreeNode ) 
     dfs   =   func ( root   * TreeNode )   { 
         if   root   ==   nil   { 
             return 
         } 
         t   =   append ( t ,   strconv . Itoa ( root . Val )) 
         if   root . Left   ==   nil   &&   root . Right   ==   nil   { 
             ans   =   append ( ans ,   strings . Join ( t ,   "->" )) 
         }   else   { 
             dfs ( root . Left ) 
             dfs ( root . Right ) 
         } 
         t   =   t [: len ( t ) - 1 ] 
     } 
     dfs ( root ) 
     return 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 /** 
 * Definition for a binary tree node. 
 * class TreeNode { 
 *     val: number 
 *     left: TreeNode | null 
 *     right: TreeNode | null 
 *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) { 
 *         this.val = (val===undefined ? 0 : val) 
 *         this.left = (left===undefined ? null : left) 
 *         this.right = (right===undefined ? null : right) 
 *     } 
 * } 
 */ 
function   binaryTreePaths ( root :   TreeNode   |   null ) :   string []   { 
     const   ans :   string []   =   []; 
     const   t :   number []   =   []; 
     const   dfs   =   ( root :   TreeNode   |   null )   =>   { 
         if   ( ! root )   { 
             return ; 
         } 
         t . push ( root . val ); 
         if   ( ! root . left   &&   ! root . right )   { 
             ans . push ( t . join ( '->' )); 
         }   else   { 
             dfs ( root . left ); 
             dfs ( root . right ); 
         } 
         t . pop (); 
     }; 
     dfs ( root ); 
     return   ans ; 
} 
 
 
 
 
  
  
  
    
    
    
    
      
  
    
      
  
     
   
  GitHub