
题目描述
给你一个由 '1'(陆地)和 '0'(水)组成的的二维网格,请你计算网格中岛屿的数量。
岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。
此外,你可以假设该网格的四条边均被水包围。
示例 1:
输入:grid = [
['1','1','1','1','0'],
['1','1','0','1','0'],
['1','1','0','0','0'],
['0','0','0','0','0']
]
输出:1
示例 2:
输入:grid = [
['1','1','0','0','0'],
['1','1','0','0','0'],
['0','0','1','0','0'],
['0','0','0','1','1']
]
输出:3
提示:
m == grid.length n == grid[i].length 1 <= m, n <= 300 grid[i][j] 的值为 '0' 或 '1'
解法
方法一:DFS
我们可以使用深度优先搜索(DFS)来遍历每个岛屿。遍历网格中的每个单元格 \((i, j)\),如果该单元格的值为 '1',则说明我们找到了一个新的岛屿。我们可以从该单元格开始进行 DFS,将与之相连的所有陆地单元格的值都标记为 '0',以避免重复计数。每次找到一个新的岛屿时,我们将岛屿数量加 1。
时间复杂度 \(O(m \times n)\),空间复杂度 \(O(m \times n)\)。其中 \(m\) 和 \(n\) 分别为网格的行数和列数。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | class Solution:
def numIslands(self, grid: List[List[str]]) -> int:
def dfs(i, j):
grid[i][j] = '0'
for a, b in pairwise(dirs):
x, y = i + a, j + b
if 0 <= x < m and 0 <= y < n and grid[x][y] == '1':
dfs(x, y)
ans = 0
dirs = (-1, 0, 1, 0, -1)
m, n = len(grid), len(grid[0])
for i in range(m):
for j in range(n):
if grid[i][j] == '1':
dfs(i, j)
ans += 1
return ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33 | class Solution {
private char[][] grid;
private int m;
private int n;
public int numIslands(char[][] grid) {
m = grid.length;
n = grid[0].length;
this.grid = grid;
int ans = 0;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (grid[i][j] == '1') {
dfs(i, j);
++ans;
}
}
}
return ans;
}
private void dfs(int i, int j) {
grid[i][j] = '0';
int[] dirs = {-1, 0, 1, 0, -1};
for (int k = 0; k < 4; ++k) {
int x = i + dirs[k];
int y = j + dirs[k + 1];
if (x >= 0 && x < m && y >= 0 && y < n && grid[x][y] == '1') {
dfs(x, y);
}
}
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 | class Solution {
public:
int numIslands(vector<vector<char>>& grid) {
int m = grid.size();
int n = grid[0].size();
int ans = 0;
int dirs[5] = {-1, 0, 1, 0, -1};
auto dfs = [&](this auto&& dfs, int i, int j) -> void {
grid[i][j] = '0';
for (int k = 0; k < 4; ++k) {
int x = i + dirs[k], y = j + dirs[k + 1];
if (x >= 0 && x < grid.size() && y >= 0 && y < grid[0].size() && grid[x][y] == '1') {
dfs(x, y);
}
}
};
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (grid[i][j] == '1') {
dfs(i, j);
++ans;
}
}
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | func numIslands(grid [][]byte) int {
m, n := len(grid), len(grid[0])
var dfs func(i, j int)
dfs = func(i, j int) {
grid[i][j] = '0'
dirs := []int{-1, 0, 1, 0, -1}
for k := 0; k < 4; k++ {
x, y := i+dirs[k], j+dirs[k+1]
if x >= 0 && x < m && y >= 0 && y < n && grid[x][y] == '1' {
dfs(x, y)
}
}
}
ans := 0
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
if grid[i][j] == '1' {
dfs(i, j)
ans++
}
}
}
return ans
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | function numIslands(grid: string[][]): number {
const m = grid.length;
const n = grid[0].length;
let ans = 0;
const dirs = [-1, 0, 1, 0, -1];
const dfs = (i: number, j: number) => {
grid[i][j] = '0';
for (let k = 0; k < 4; ++k) {
const x = i + dirs[k];
const y = j + dirs[k + 1];
if (grid[x]?.[y] === '1') {
dfs(x, y);
}
}
};
for (let i = 0; i < m; ++i) {
for (let j = 0; j < n; ++j) {
if (grid[i][j] === '1') {
dfs(i, j);
ans++;
}
}
}
return ans;
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33 | const DIRS: [i32; 5] = [-1, 0, 1, 0, -1];
impl Solution {
pub fn num_islands(grid: Vec<Vec<char>>) -> i32 {
fn dfs(grid: &mut Vec<Vec<char>>, i: usize, j: usize) {
grid[i][j] = '0';
for k in 0..4 {
let x = (i as i32) + DIRS[k];
let y = (j as i32) + DIRS[k + 1];
if x >= 0
&& (x as usize) < grid.len()
&& y >= 0
&& (y as usize) < grid[0].len()
&& grid[x as usize][y as usize] == '1'
{
dfs(grid, x as usize, y as usize);
}
}
}
let mut grid = grid;
let mut ans = 0;
for i in 0..grid.len() {
for j in 0..grid[0].len() {
if grid[i][j] == '1' {
dfs(&mut grid, i, j);
ans += 1;
}
}
}
ans
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33 | public class Solution {
public int NumIslands(char[][] grid) {
int m = grid.Length;
int n = grid[0].Length;
int ans = 0;
int[] dirs = { -1, 0, 1, 0, -1 };
void Dfs(int i, int j) {
grid[i][j] = '0';
for (int k = 0; k < 4; ++k) {
int x = i + dirs[k];
int y = j + dirs[k + 1];
if (x >= 0 && x < m &&
y >= 0 && y < n &&
grid[x][y] == '1')
{
Dfs(x, y);
}
}
}
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (grid[i][j] == '1') {
Dfs(i, j);
ans++;
}
}
}
return ans;
}
}
|
方法二:BFS
我们也可以使用广度优先搜索(BFS)来遍历每个岛屿。遍历网格中的每个单元格 \((i, j)\),如果该单元格的值为 '1',则说明我们找到了一个新的岛屿。我们可以从该单元格开始进行 BFS,将与之相连的所有陆地单元格的值都标记为 '0',以避免重复计数。每次找到一个新的岛屿时,我们将岛屿数量加 1。
BFS 的具体过程如下:
- 将起始单元格 \((i, j)\) 入队,并将其值标记为 '0'。
- 当队列不为空时,执行以下操作:
- 出队一个单元格 \(p\)。
- 遍历 \(p\) 的四个相邻单元格 \((x, y)\),如果 \((x, y)\) 在网格范围内且值为 '1',则将其入队并将其值标记为 '0'。
时间复杂度 \(O(m \times n)\),空间复杂度 \(O(m \times n)\)。其中 \(m\) 和 \(n\) 分别为网格的行数和列数。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | class Solution:
def numIslands(self, grid: List[List[str]]) -> int:
def bfs(i, j):
grid[i][j] = '0'
q = deque([(i, j)])
while q:
i, j = q.popleft()
for a, b in pairwise(dirs):
x, y = i + a, j + b
if 0 <= x < m and 0 <= y < n and grid[x][y] == '1':
q.append((x, y))
grid[x][y] = 0
ans = 0
dirs = (-1, 0, 1, 0, -1)
m, n = len(grid), len(grid[0])
for i in range(m):
for j in range(n):
if grid[i][j] == '1':
bfs(i, j)
ans += 1
return ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39 | class Solution {
private char[][] grid;
private int m;
private int n;
public int numIslands(char[][] grid) {
m = grid.length;
n = grid[0].length;
this.grid = grid;
int ans = 0;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (grid[i][j] == '1') {
bfs(i, j);
++ans;
}
}
}
return ans;
}
private void bfs(int i, int j) {
grid[i][j] = '0';
Deque<int[]> q = new ArrayDeque<>();
q.offer(new int[] {i, j});
int[] dirs = {-1, 0, 1, 0, -1};
while (!q.isEmpty()) {
int[] p = q.poll();
for (int k = 0; k < 4; ++k) {
int x = p[0] + dirs[k];
int y = p[1] + dirs[k + 1];
if (x >= 0 && x < m && y >= 0 && y < n && grid[x][y] == '1') {
q.offer(new int[] {x, y});
grid[x][y] = '0';
}
}
}
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35 | class Solution {
public:
int numIslands(vector<vector<char>>& grid) {
int m = grid.size();
int n = grid[0].size();
int ans = 0;
int dirs[5] = {-1, 0, 1, 0, -1};
auto bfs = [&](int i, int j) -> void {
grid[i][j] = '0';
queue<pair<int, int>> q;
q.push({i, j});
while (!q.empty()) {
auto [a, b] = q.front();
q.pop();
for (int k = 0; k < 4; ++k) {
int x = a + dirs[k];
int y = b + dirs[k + 1];
if (x >= 0 && x < grid.size() && y >= 0 && y < grid[0].size() && grid[x][y] == '1') {
q.push({x, y});
grid[x][y] = '0';
}
}
}
};
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (grid[i][j] == '1') {
bfs(i, j);
++ans;
}
}
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | func numIslands(grid [][]byte) int {
m, n := len(grid), len(grid[0])
bfs := func(i, j int) {
grid[i][j] = '0'
q := [][]int{[]int{i, j}}
dirs := []int{-1, 0, 1, 0, -1}
for len(q) > 0 {
p := q[0]
q = q[1:]
for k := 0; k < 4; k++ {
x, y := p[0]+dirs[k], p[1]+dirs[k+1]
if x >= 0 && x < m && y >= 0 && y < n && grid[x][y] == '1' {
q = append(q, []int{x, y})
grid[x][y] = '0'
}
}
}
}
ans := 0
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
if grid[i][j] == '1' {
bfs(i, j)
ans++
}
}
}
return ans
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | function numIslands(grid: string[][]): number {
const m = grid.length;
const n = grid[0].length;
let ans = 0;
const bfs = (i: number, j: number) => {
grid[i][j] = '0';
const q = [[i, j]];
const dirs = [-1, 0, 1, 0, -1];
for (const [i, j] of q) {
for (let k = 0; k < 4; ++k) {
const x = i + dirs[k];
const y = j + dirs[k + 1];
if (grid[x]?.[y] == '1') {
q.push([x, y]);
grid[x][y] = '0';
}
}
}
};
for (let i = 0; i < m; ++i) {
for (let j = 0; j < n; ++j) {
if (grid[i][j] == '1') {
bfs(i, j);
++ans;
}
}
}
return ans;
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40 | use std::collections::VecDeque;
const DIRS: [i32; 5] = [-1, 0, 1, 0, -1];
impl Solution {
pub fn num_islands(grid: Vec<Vec<char>>) -> i32 {
fn bfs(grid: &mut Vec<Vec<char>>, i: usize, j: usize) {
grid[i][j] = '0';
let mut queue = VecDeque::from([(i, j)]);
while !queue.is_empty() {
let (i, j) = queue.pop_front().unwrap();
for k in 0..4 {
let x = (i as i32) + DIRS[k];
let y = (j as i32) + DIRS[k + 1];
if x >= 0
&& (x as usize) < grid.len()
&& y >= 0
&& (y as usize) < grid[0].len()
&& grid[x as usize][y as usize] == '1'
{
grid[x as usize][y as usize] = '0';
queue.push_back((x as usize, y as usize));
}
}
}
}
let mut grid = grid;
let mut ans = 0;
for i in 0..grid.len() {
for j in 0..grid[0].len() {
if grid[i][j] == '1' {
bfs(&mut grid, i, j);
ans += 1;
}
}
}
ans
}
}
|
方法三: 并查集
我们可以使用并查集(Union-Find)来解决这个问题。遍历网格中的每个单元格 \((i, j)\),如果该单元格的值为 '1',则将其与相邻的陆地单元格进行合并。最后,我们统计并查集中不同根节点的数量,即为岛屿的数量。
时间复杂度 \(O(m \times n \times \log (m \times n))\),空间复杂度 \(O(m \times n)\)。其中 \(m\) 和 \(n\) 分别为网格的行数和列数。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | class Solution:
def numIslands(self, grid: List[List[str]]) -> int:
def find(x):
if p[x] != x:
p[x] = find(p[x])
return p[x]
dirs = (0, 1, 0)
m, n = len(grid), len(grid[0])
p = list(range(m * n))
for i in range(m):
for j in range(n):
if grid[i][j] == '1':
for a, b in pairwise(dirs):
x, y = i + a, j + b
if x < m and y < n and grid[x][y] == '1':
p[find(i * n + j)] = find(x * n + y)
return sum(
grid[i][j] == '1' and i * n + j == find(i * n + j)
for i in range(m)
for j in range(n)
)
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42 | class Solution {
private int[] p;
public int numIslands(char[][] grid) {
int m = grid.length;
int n = grid[0].length;
p = new int[m * n];
for (int i = 0; i < p.length; ++i) {
p[i] = i;
}
int[] dirs = {1, 0, 1};
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (grid[i][j] == '1') {
for (int k = 0; k < 2; ++k) {
int x = i + dirs[k];
int y = j + dirs[k + 1];
if (x < m && y < n && grid[x][y] == '1') {
p[find(x * n + y)] = find(i * n + j);
}
}
}
}
}
int ans = 0;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (grid[i][j] == '1' && i * n + j == find(i * n + j)) {
++ans;
}
}
}
return ans;
}
private int find(int x) {
if (p[x] != x) {
p[x] = find(p[x]);
}
return p[x];
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36 | class Solution {
public:
int numIslands(vector<vector<char>>& grid) {
int m = grid.size();
int n = grid[0].size();
vector<int> p(m * n);
iota(p.begin(), p.end(), 0);
function<int(int)> find = [&](int x) -> int {
if (p[x] != x) {
p[x] = find(p[x]);
}
return p[x];
};
int dirs[3] = {1, 0, 1};
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (grid[i][j] == '1') {
for (int k = 0; k < 2; ++k) {
int x = i + dirs[k];
int y = j + dirs[k + 1];
if (x < m && y < n && grid[x][y] == '1') {
p[find(x * n + y)] = find(i * n + j);
}
}
}
}
}
int ans = 0;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
ans += grid[i][j] == '1' && i * n + j == find(i * n + j);
}
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36 | func numIslands(grid [][]byte) int {
m, n := len(grid), len(grid[0])
p := make([]int, m*n)
for i := range p {
p[i] = i
}
var find func(x int) int
find = func(x int) int {
if p[x] != x {
p[x] = find(p[x])
}
return p[x]
}
dirs := []int{1, 0, 1}
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
if grid[i][j] == '1' {
for k := 0; k < 2; k++ {
x, y := i+dirs[k], j+dirs[k+1]
if x < m && y < n && grid[x][y] == '1' {
p[find(x*n+y)] = find(i*n + j)
}
}
}
}
}
ans := 0
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
if grid[i][j] == '1' && i*n+j == find(i*n+j) {
ans++
}
}
}
return ans
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34 | function numIslands(grid: string[][]): number {
const m = grid.length;
const n = grid[0].length;
const p: number[] = Array.from({ length: m * n }, (_, i) => i);
function find(x: number): number {
if (p[x] != x) {
p[x] = find(p[x]);
}
return p[x];
}
const dirs = [1, 0, 1];
for (let i = 0; i < m; ++i) {
for (let j = 0; j < n; ++j) {
if (grid[i][j] == '1') {
for (let k = 0; k < 2; ++k) {
const x = i + dirs[k];
const y = j + dirs[k + 1];
if (grid[x]?.[y] == '1') {
p[find(i * n + j)] = find(x * n + y);
}
}
}
}
}
let ans = 0;
for (let i = 0; i < m; ++i) {
for (let j = 0; j < n; ++j) {
if (grid[i][j] == '1' && i * n + j == find(i * n + j)) {
++ans;
}
}
}
return ans;
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42 | const DIRS: [usize; 3] = [1, 0, 1];
impl Solution {
pub fn num_islands(grid: Vec<Vec<char>>) -> i32 {
let m = grid.len();
let n = grid[0].len();
let mut p: Vec<i32> = (0..(m * n) as i32).collect();
fn find(p: &mut Vec<i32>, x: usize) -> i32 {
if p[x] != (x as i32) {
p[x] = find(p, p[x] as usize);
}
p[x]
}
for i in 0..m {
for j in 0..n {
if grid[i][j] == '1' {
for k in 0..2 {
let x = i + DIRS[k];
let y = j + DIRS[k + 1];
if x < m && y < n && grid[x][y] == '1' {
let f1 = find(&mut p, x * n + y);
let f2 = find(&mut p, i * n + j);
p[f1 as usize] = f2;
}
}
}
}
}
let mut ans = 0;
for i in 0..m {
for j in 0..n {
if grid[i][j] == '1' && p[i * n + j] == ((i * n + j) as i32) {
ans += 1;
}
}
}
ans
}
}
|