二叉树 
      
    
      
      
      
        广度优先搜索 
      
    
      
      
      
        树 
      
    
      
      
      
        深度优先搜索 
      
    
   
  
    
      
       
     
  
  
    
      
    
    
      
       
     
  
题目描述 
给定一个二叉树的 根节点  root,想象自己站在它的右侧,按照从顶部到底部的顺序,返回从右侧所能看到的节点值。
 
示例 1: 
输入: root = [1,2,3,null,5,null,4]
输出: [1,3,4] 
解释: 
 
示例 2: 
输入: root = [1,2,3,4,null,null,null,5]
输出: [1,3,4,5]
解释: 
 
示例 3: 
输入: root = [1,null,3] 
输出: [1,3] 
 
示例 4: 
提示: 
    二叉树的节点个数的范围是 [0,100] 
    -100 <= Node.val <= 100  
 
解法 
方法一:BFS 
我们可以使用广度优先搜索,定义一个队列 \(\textit{q}\) ,将根节点放入队列中。每次从队列中取出当前层的所有节点,对于当前节点,我们先判断右子树是否存在,若存在则将右子树放入队列中;再判断左子树是否存在,若存在则将左子树放入队列中。这样每次取出队列中的第一个节点即为该层的右视图节点。
时间复杂度 \(O(n)\) ,空间复杂度 \(O(n)\) 。其中 \(n\)  为二叉树节点个数。
Python3 Java C++ Go TypeScript Rust JavaScript 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 # Definition for a binary tree node. 
# class TreeNode: 
#     def __init__(self, val=0, left=None, right=None): 
#         self.val = val 
#         self.left = left 
#         self.right = right 
class   Solution : 
    def   rightSideView ( self ,  root :  Optional [ TreeNode ])  ->  List [ int ]: 
        ans  =  [] 
        if  root  is  None : 
            return  ans 
        q  =  deque ([ root ]) 
        while  q : 
            ans . append ( q [ 0 ] . val ) 
            for  _  in  range ( len ( q )): 
                node  =  q . popleft () 
                if  node . right : 
                    q . append ( node . right ) 
                if  node . left : 
                    q . append ( node . left ) 
        return  ans 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 /** 
 * Definition for a binary tree node. 
 * public class TreeNode { 
 *     int val; 
 *     TreeNode left; 
 *     TreeNode right; 
 *     TreeNode() {} 
 *     TreeNode(int val) { this.val = val; } 
 *     TreeNode(int val, TreeNode left, TreeNode right) { 
 *         this.val = val; 
 *         this.left = left; 
 *         this.right = right; 
 *     } 
 * } 
 */ 
class  Solution   { 
     public   List < Integer >   rightSideView ( TreeNode   root )   { 
         List < Integer >   ans   =   new   ArrayList <> (); 
         if   ( root   ==   null )   { 
             return   ans ; 
         } 
         Deque < TreeNode >   q   =   new   ArrayDeque <> (); 
         q . offer ( root ); 
         while   ( ! q . isEmpty ())   { 
             ans . add ( q . peekFirst (). val ); 
             for   ( int   k   =   q . size ();   k   >   0 ;   -- k )   { 
                 TreeNode   node   =   q . poll (); 
                 if   ( node . right   !=   null )   { 
                     q . offer ( node . right ); 
                 } 
                 if   ( node . left   !=   null )   { 
                     q . offer ( node . left ); 
                 } 
             } 
         } 
         return   ans ; 
     } 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 /** 
 * Definition for a binary tree node. 
 * struct TreeNode { 
 *     int val; 
 *     TreeNode *left; 
 *     TreeNode *right; 
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} 
 * }; 
 */ 
class   Solution   { 
public : 
     vector < int >   rightSideView ( TreeNode *   root )   { 
         vector < int >   ans ; 
         if   ( ! root )   { 
             return   ans ; 
         } 
         queue < TreeNode *>   q {{ root }}; 
         while   ( q . size ())   { 
             ans . push_back ( q . front () -> val ); 
             for   ( int   k   =   q . size ();   k ;   -- k )   { 
                 auto   node   =   q . front (); 
                 q . pop (); 
                 if   ( node -> right )   { 
                     q . push ( node -> right ); 
                 } 
                 if   ( node -> left )   { 
                     q . push ( node -> left ); 
                 } 
             } 
         } 
         return   ans ; 
     } 
}; 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 /** 
 * Definition for a binary tree node. 
 * type TreeNode struct { 
 *     Val int 
 *     Left *TreeNode 
 *     Right *TreeNode 
 * } 
 */ 
func   rightSideView ( root   * TreeNode )   ( ans   [] int )   { 
     if   root   ==   nil   { 
         return 
     } 
     q   :=   [] * TreeNode { root } 
     for   len ( q )   >   0   { 
         ans   =   append ( ans ,   q [ 0 ]. Val ) 
         for   k   :=   len ( q );   k   >   0 ;   k --   { 
             node   :=   q [ 0 ] 
             q   =   q [ 1 :] 
             if   node . Right   !=   nil   { 
                 q   =   append ( q ,   node . Right ) 
             } 
             if   node . Left   !=   nil   { 
                 q   =   append ( q ,   node . Left ) 
             } 
         } 
     } 
     return 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 /** 
 * Definition for a binary tree node. 
 * class TreeNode { 
 *     val: number 
 *     left: TreeNode | null 
 *     right: TreeNode | null 
 *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) { 
 *         this.val = (val===undefined ? 0 : val) 
 *         this.left = (left===undefined ? null : left) 
 *         this.right = (right===undefined ? null : right) 
 *     } 
 * } 
 */ 
function   rightSideView ( root :   TreeNode   |   null ) :   number []   { 
     const   ans :   number []   =   []; 
     if   ( ! root )   { 
         return   ans ; 
     } 
     const   q :   TreeNode []   =   [ root ]; 
     while   ( q . length   >   0 )   { 
         ans . push ( q [ 0 ]. val ); 
         const   nq :   TreeNode []   =   []; 
         for   ( const   {   left ,   right   }   of   q )   { 
             if   ( right )   { 
                 nq . push ( right ); 
             } 
             if   ( left )   { 
                 nq . push ( left ); 
             } 
         } 
         q . length   =   0 ; 
         q . push (... nq ); 
     } 
     return   ans ; 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 // Definition for a binary tree node. 
// #[derive(Debug, PartialEq, Eq)] 
// pub struct TreeNode { 
//   pub val: i32, 
//   pub left: Option<Rc<RefCell<TreeNode>>>, 
//   pub right: Option<Rc<RefCell<TreeNode>>>, 
// } 
// 
// impl TreeNode { 
//   #[inline] 
//   pub fn new(val: i32) -> Self { 
//     TreeNode { 
//       val, 
//       left: None, 
//       right: None 
//     } 
//   } 
// } 
use   std :: cell :: RefCell ; 
use   std :: collections :: VecDeque ; 
use   std :: rc :: Rc ; 
impl   Solution   { 
     pub   fn   right_side_view ( root :   Option < Rc < RefCell < TreeNode >>> )   ->   Vec < i32 >   { 
         let   mut   ans   =   vec! []; 
         if   root . is_none ()   { 
             return   ans ; 
         } 
         let   mut   q   =   VecDeque :: new (); 
         q . push_back ( root ); 
         while   ! q . is_empty ()   { 
             let   k   =   q . len (); 
             ans . push ( q [ 0 ]. as_ref (). unwrap (). borrow (). val ); 
             for   _   in   0 .. k   { 
                 if   let   Some ( node )   =   q . pop_front (). unwrap ()   { 
                     let   mut   node   =   node . borrow_mut (); 
                     if   node . right . is_some ()   { 
                         q . push_back ( node . right . take ()); 
                     } 
                     if   node . left . is_some ()   { 
                         q . push_back ( node . left . take ()); 
                     } 
                 } 
             } 
         } 
         ans 
     } 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 /** 
 * Definition for a binary tree node. 
 * function TreeNode(val, left, right) { 
 *     this.val = (val===undefined ? 0 : val) 
 *     this.left = (left===undefined ? null : left) 
 *     this.right = (right===undefined ? null : right) 
 * } 
 */ 
/** 
 * @param {TreeNode} root 
 * @return {number[]} 
 */ 
var   rightSideView   =   function   ( root )   { 
     const   ans   =   []; 
     if   ( ! root )   { 
         return   ans ; 
     } 
     const   q   =   [ root ]; 
     while   ( q . length   >   0 )   { 
         ans . push ( q [ 0 ]. val ); 
         const   nq   =   []; 
         for   ( const   {   left ,   right   }   of   q )   { 
             if   ( right )   { 
                 nq . push ( right ); 
             } 
             if   ( left )   { 
                 nq . push ( left ); 
             } 
         } 
         q . length   =   0 ; 
         q . push (... nq ); 
     } 
     return   ans ; 
}; 
 
 
 
 
方法二:DFS 
使用 DFS 深度优先遍历二叉树,每次先遍历右子树,再遍历左子树,这样每层第一个遍历到的节点即为该层的右视图节点。
时间复杂度 \(O(n)\) ,空间复杂度 \(O(n)\) 。其中 \(n\)  为二叉树节点个数。
Python3 Java C++ Go TypeScript Rust JavaScript 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 # Definition for a binary tree node. 
# class TreeNode: 
#     def __init__(self, val=0, left=None, right=None): 
#         self.val = val 
#         self.left = left 
#         self.right = right 
class   Solution : 
    def   rightSideView ( self ,  root :  Optional [ TreeNode ])  ->  List [ int ]: 
        def   dfs ( root :  Optional [ TreeNode ],  depth :  int )  ->  None : 
            if  root  is  None : 
                return 
            if  len ( ans )  ==  depth : 
                ans . append ( root . val ) 
            dfs ( root . right ,  depth  +  1 ) 
            dfs ( root . left ,  depth  +  1 ) 
        ans  =  [] 
        dfs ( root ,  0 ) 
        return  ans 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 /** 
 * Definition for a binary tree node. 
 * public class TreeNode { 
 *     int val; 
 *     TreeNode left; 
 *     TreeNode right; 
 *     TreeNode() {} 
 *     TreeNode(int val) { this.val = val; } 
 *     TreeNode(int val, TreeNode left, TreeNode right) { 
 *         this.val = val; 
 *         this.left = left; 
 *         this.right = right; 
 *     } 
 * } 
 */ 
class  Solution   { 
     private   List < Integer >   ans   =   new   ArrayList <> (); 
     public   List < Integer >   rightSideView ( TreeNode   root )   { 
         dfs ( root ,   0 ); 
         return   ans ; 
     } 
     private   void   dfs ( TreeNode   root ,   int   depth )   { 
         if   ( root   ==   null )   { 
             return ; 
         } 
         if   ( ans . size ()   ==   depth )   { 
             ans . add ( root . val ); 
         } 
         dfs ( root . right ,   depth   +   1 ); 
         dfs ( root . left ,   depth   +   1 ); 
     } 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 /** 
 * Definition for a binary tree node. 
 * struct TreeNode { 
 *     int val; 
 *     TreeNode *left; 
 *     TreeNode *right; 
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} 
 * }; 
 */ 
class   Solution   { 
public : 
     vector < int >   rightSideView ( TreeNode *   root )   { 
         vector < int >   ans ; 
         auto   dfs   =   [ & ]( this   auto &&   dfs ,   TreeNode *   root ,   int   depth )   ->   void   { 
             if   ( ! root )   { 
                 return ; 
             } 
             if   ( ans . size ()   ==   depth )   { 
                 ans . push_back ( root -> val ); 
             } 
             dfs ( root -> right ,   depth   +   1 ); 
             dfs ( root -> left ,   depth   +   1 ); 
         }; 
         dfs ( root ,   0 ); 
         return   ans ; 
     } 
}; 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 /** 
 * Definition for a binary tree node. 
 * type TreeNode struct { 
 *     Val int 
 *     Left *TreeNode 
 *     Right *TreeNode 
 * } 
 */ 
func   rightSideView ( root   * TreeNode )   ( ans   [] int )   { 
     var   dfs   func ( * TreeNode ,   int ) 
     dfs   =   func ( root   * TreeNode ,   depth   int )   { 
         if   root   ==   nil   { 
             return 
         } 
         if   len ( ans )   ==   depth   { 
             ans   =   append ( ans ,   root . Val ) 
         } 
         dfs ( root . Right ,   depth + 1 ) 
         dfs ( root . Left ,   depth + 1 ) 
     } 
     dfs ( root ,   0 ) 
     return 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 /** 
 * Definition for a binary tree node. 
 * class TreeNode { 
 *     val: number 
 *     left: TreeNode | null 
 *     right: TreeNode | null 
 *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) { 
 *         this.val = (val===undefined ? 0 : val) 
 *         this.left = (left===undefined ? null : left) 
 *         this.right = (right===undefined ? null : right) 
 *     } 
 * } 
 */ 
function   rightSideView ( root :   TreeNode   |   null ) :   number []   { 
     const   ans   =   []; 
     const   dfs   =   ( root :   TreeNode   |   null ,   depth :   number )   =>   { 
         if   ( ! root )   { 
             return ; 
         } 
         if   ( ans . length   ==   depth )   { 
             ans . push ( root . val ); 
         } 
         dfs ( root . right ,   depth   +   1 ); 
         dfs ( root . left ,   depth   +   1 ); 
     }; 
     dfs ( root ,   0 ); 
     return   ans ; 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 // Definition for a binary tree node. 
// #[derive(Debug, PartialEq, Eq)] 
// pub struct TreeNode { 
//   pub val: i32, 
//   pub left: Option<Rc<RefCell<TreeNode>>>, 
//   pub right: Option<Rc<RefCell<TreeNode>>>, 
// } 
// 
// impl TreeNode { 
//   #[inline] 
//   pub fn new(val: i32) -> Self { 
//     TreeNode { 
//       val, 
//       left: None, 
//       right: None 
//     } 
//   } 
// } 
use   std :: cell :: RefCell ; 
use   std :: rc :: Rc ; 
impl   Solution   { 
     pub   fn   right_side_view ( root :   Option < Rc < RefCell < TreeNode >>> )   ->   Vec < i32 >   { 
         let   mut   ans   =   Vec :: new (); 
         fn   dfs ( node :   Option < Rc < RefCell < TreeNode >>> ,   depth :   usize ,   ans :   & mut   Vec < i32 > )   { 
             if   let   Some ( node_ref )   =   node   { 
                 let   node   =   node_ref . borrow (); 
                 if   ans . len ()   ==   depth   { 
                     ans . push ( node . val ); 
                 } 
                 dfs ( node . right . clone (),   depth   +   1 ,   ans ); 
                 dfs ( node . left . clone (),   depth   +   1 ,   ans ); 
             } 
         } 
         dfs ( root ,   0 ,   & mut   ans ); 
         ans 
     } 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 /** 
 * Definition for a binary tree node. 
 * function TreeNode(val, left, right) { 
 *     this.val = (val===undefined ? 0 : val) 
 *     this.left = (left===undefined ? null : left) 
 *     this.right = (right===undefined ? null : right) 
 * } 
 */ 
/** 
 * @param {TreeNode} root 
 * @return {number[]} 
 */ 
var   rightSideView   =   function   ( root )   { 
     const   ans   =   []; 
     const   dfs   =   ( root ,   depth )   =>   { 
         if   ( ! root )   { 
             return ; 
         } 
         if   ( ans . length   ==   depth )   { 
             ans . push ( root . val ); 
         } 
         dfs ( root . right ,   depth   +   1 ); 
         dfs ( root . left ,   depth   +   1 ); 
     }; 
     dfs ( root ,   0 ); 
     return   ans ; 
};