二叉树 
      
    
      
      
      
        栈 
      
    
      
      
      
        树 
      
    
      
      
      
        深度优先搜索 
      
    
   
  
    
      
       
     
  
  
    
      
    
    
      
       
     
  
题目描述 
给你一棵二叉树的根节点 root ,返回其节点值的 后序遍历  。
 
示例 1: 
输入: root = [1,null,2,3]
输出: [3,2,1]
解释: 
 
示例 2: 
输入: root = [1,2,3,4,5,null,8,null,null,6,7,9]
输出: [4,6,7,5,2,9,8,3,1]
解释: 
 
示例 3: 
示例 4: 
 
提示: 
    树中节点的数目在范围 [0, 100] 内 
    -100 <= Node.val <= 100 
 
 
进阶: 递归算法很简单,你可以通过迭代算法完成吗?
解法 
方法一:递归 
我们先递归左右子树,然后再访问根节点。
时间复杂度 \(O(n)\) ,空间复杂度 \(O(n)\) 。其中 \(n\)  是二叉树的节点数,空间复杂度主要取决于递归调用的栈空间。
Python3 Java C++ Go TypeScript Rust 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 # Definition for a binary tree node. 
# class TreeNode: 
#     def __init__(self, val=0, left=None, right=None): 
#         self.val = val 
#         self.left = left 
#         self.right = right 
class   Solution : 
    def   postorderTraversal ( self ,  root :  Optional [ TreeNode ])  ->  List [ int ]: 
        def   dfs ( root ): 
            if  root  is  None : 
                return 
            dfs ( root . left ) 
            dfs ( root . right ) 
            ans . append ( root . val ) 
        ans  =  [] 
        dfs ( root ) 
        return  ans 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 /** 
 * Definition for a binary tree node. 
 * public class TreeNode { 
 *     int val; 
 *     TreeNode left; 
 *     TreeNode right; 
 *     TreeNode() {} 
 *     TreeNode(int val) { this.val = val; } 
 *     TreeNode(int val, TreeNode left, TreeNode right) { 
 *         this.val = val; 
 *         this.left = left; 
 *         this.right = right; 
 *     } 
 * } 
 */ 
class  Solution   { 
     private   List < Integer >   ans   =   new   ArrayList <> (); 
     public   List < Integer >   postorderTraversal ( TreeNode   root )   { 
         dfs ( root ); 
         return   ans ; 
     } 
     private   void   dfs ( TreeNode   root )   { 
         if   ( root   ==   null )   { 
             return ; 
         } 
         dfs ( root . left ); 
         dfs ( root . right ); 
         ans . add ( root . val ); 
     } 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 /** 
 * Definition for a binary tree node. 
 * struct TreeNode { 
 *     int val; 
 *     TreeNode *left; 
 *     TreeNode *right; 
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} 
 * }; 
 */ 
class   Solution   { 
public : 
     vector < int >   postorderTraversal ( TreeNode *   root )   { 
         vector < int >   ans ; 
         function < void ( TreeNode * ) >   dfs   =   [ & ]( TreeNode *   root )   { 
             if   ( ! root )   { 
                 return ; 
             } 
             dfs ( root -> left ); 
             dfs ( root -> right ); 
             ans . push_back ( root -> val ); 
         }; 
         dfs ( root ); 
         return   ans ; 
     } 
}; 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 /** 
 * Definition for a binary tree node. 
 * type TreeNode struct { 
 *     Val int 
 *     Left *TreeNode 
 *     Right *TreeNode 
 * } 
 */ 
func   postorderTraversal ( root   * TreeNode )   ( ans   [] int )   { 
     var   dfs   func ( * TreeNode ) 
     dfs   =   func ( root   * TreeNode )   { 
         if   root   ==   nil   { 
             return 
         } 
         dfs ( root . Left ) 
         dfs ( root . Right ) 
         ans   =   append ( ans ,   root . Val ) 
     } 
     dfs ( root ) 
     return 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 /** 
 * Definition for a binary tree node. 
 * class TreeNode { 
 *     val: number 
 *     left: TreeNode | null 
 *     right: TreeNode | null 
 *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) { 
 *         this.val = (val===undefined ? 0 : val) 
 *         this.left = (left===undefined ? null : left) 
 *         this.right = (right===undefined ? null : right) 
 *     } 
 * } 
 */ 
function   postorderTraversal ( root :   TreeNode   |   null ) :   number []   { 
     const   ans :   number []   =   []; 
     const   dfs   =   ( root :   TreeNode   |   null )   =>   { 
         if   ( ! root )   { 
             return ; 
         } 
         dfs ( root . left ); 
         dfs ( root . right ); 
         ans . push ( root . val ); 
     }; 
     dfs ( root ); 
     return   ans ; 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 // Definition for a binary tree node. 
// #[derive(Debug, PartialEq, Eq)] 
// pub struct TreeNode { 
//   pub val: i32, 
//   pub left: Option<Rc<RefCell<TreeNode>>>, 
//   pub right: Option<Rc<RefCell<TreeNode>>>, 
// } 
// 
// impl TreeNode { 
//   #[inline] 
//   pub fn new(val: i32) -> Self { 
//     TreeNode { 
//       val, 
//       left: None, 
//       right: None 
//     } 
//   } 
// } 
use   std :: cell :: RefCell ; 
use   std :: rc :: Rc ; 
impl   Solution   { 
     fn   dfs ( root :   & Option < Rc < RefCell < TreeNode >>> ,   ans :   & mut   Vec < i32 > )   { 
         if   root . is_none ()   { 
             return ; 
         } 
         let   node   =   root . as_ref (). unwrap (). borrow (); 
         Self :: dfs ( & node . left ,   ans ); 
         Self :: dfs ( & node . right ,   ans ); 
         ans . push ( node . val ); 
     } 
     pub   fn   postorder_traversal ( root :   Option < Rc < RefCell < TreeNode >>> )   ->   Vec < i32 >   { 
         let   mut   ans   =   vec! []; 
         Self :: dfs ( & root ,   & mut   ans ); 
         ans 
     } 
} 
 
 
 
 
方法二:栈实现后序遍历 
先序遍历的顺序是:根、左、右,如果我们改变左右孩子的顺序,就能将顺序变成:根、右、左。最后再将结果反转一下,就得到了后序遍历的结果。
因此,栈实现非递归遍历的思路如下:
定义一个栈 \(stk\) ,先将根节点压入栈 
若栈不为空,每次从栈中弹出一个节点 
处理该节点 
先把节点左孩子压入栈,接着把节点右孩子压入栈(如果有孩子节点) 
重复 2-4 
将结果反转,得到后序遍历的结果 
 
时间复杂度 \(O(n)\) ,空间复杂度 \(O(n)\) 。其中 \(n\)  是二叉树的节点数,空间复杂度主要取决于栈空间。
Python3 Java C++ Go TypeScript 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 # Definition for a binary tree node. 
# class TreeNode: 
#     def __init__(self, val=0, left=None, right=None): 
#         self.val = val 
#         self.left = left 
#         self.right = right 
class   Solution : 
    def   postorderTraversal ( self ,  root :  Optional [ TreeNode ])  ->  List [ int ]: 
        ans  =  [] 
        if  root  is  None : 
            return  ans 
        stk  =  [ root ] 
        while  stk : 
            node  =  stk . pop () 
            ans . append ( node . val ) 
            if  node . left : 
                stk . append ( node . left ) 
            if  node . right : 
                stk . append ( node . right ) 
        return  ans [:: - 1 ] 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 /** 
 * Definition for a binary tree node. 
 * public class TreeNode { 
 *     int val; 
 *     TreeNode left; 
 *     TreeNode right; 
 *     TreeNode() {} 
 *     TreeNode(int val) { this.val = val; } 
 *     TreeNode(int val, TreeNode left, TreeNode right) { 
 *         this.val = val; 
 *         this.left = left; 
 *         this.right = right; 
 *     } 
 * } 
 */ 
class  Solution   { 
     public   List < Integer >   postorderTraversal ( TreeNode   root )   { 
         LinkedList < Integer >   ans   =   new   LinkedList <> (); 
         if   ( root   ==   null )   { 
             return   ans ; 
         } 
         Deque < TreeNode >   stk   =   new   ArrayDeque <> (); 
         stk . push ( root ); 
         while   ( ! stk . isEmpty ())   { 
             TreeNode   node   =   stk . pop (); 
             ans . addFirst ( node . val ); 
             if   ( node . left   !=   null )   { 
                 stk . push ( node . left ); 
             } 
             if   ( node . right   !=   null )   { 
                 stk . push ( node . right ); 
             } 
         } 
         return   ans ; 
     } 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 /** 
 * Definition for a binary tree node. 
 * struct TreeNode { 
 *     int val; 
 *     TreeNode *left; 
 *     TreeNode *right; 
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} 
 * }; 
 */ 
class   Solution   { 
public : 
     vector < int >   postorderTraversal ( TreeNode *   root )   { 
         vector < int >   ans ; 
         if   ( ! root )   { 
             return   ans ; 
         } 
         stack < TreeNode *>   stk ; 
         stk . push ( root ); 
         while   ( stk . size ())   { 
             auto   node   =   stk . top (); 
             stk . pop (); 
             ans . push_back ( node -> val ); 
             if   ( node -> left )   { 
                 stk . push ( node -> left ); 
             } 
             if   ( node -> right )   { 
                 stk . push ( node -> right ); 
             } 
         } 
         reverse ( ans . begin (),   ans . end ()); 
         return   ans ; 
     } 
}; 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 /** 
 * Definition for a binary tree node. 
 * type TreeNode struct { 
 *     Val int 
 *     Left *TreeNode 
 *     Right *TreeNode 
 * } 
 */ 
func   postorderTraversal ( root   * TreeNode )   ( ans   [] int )   { 
     if   root   ==   nil   { 
         return 
     } 
     stk   :=   [] * TreeNode { root } 
     for   len ( stk )   >   0   { 
         node   :=   stk [ len ( stk ) - 1 ] 
         stk   =   stk [: len ( stk ) - 1 ] 
         ans   =   append ( ans ,   node . Val ) 
         if   node . Left   !=   nil   { 
             stk   =   append ( stk ,   node . Left ) 
         } 
         if   node . Right   !=   nil   { 
             stk   =   append ( stk ,   node . Right ) 
         } 
     } 
     for   i ,   j   :=   0 ,   len ( ans ) - 1 ;   i   <   j ;   i ,   j   =   i + 1 ,   j - 1   { 
         ans [ i ],   ans [ j ]   =   ans [ j ],   ans [ i ] 
     } 
     return 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 /** 
 * Definition for a binary tree node. 
 * class TreeNode { 
 *     val: number 
 *     left: TreeNode | null 
 *     right: TreeNode | null 
 *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) { 
 *         this.val = (val===undefined ? 0 : val) 
 *         this.left = (left===undefined ? null : left) 
 *         this.right = (right===undefined ? null : right) 
 *     } 
 * } 
 */ 
function   postorderTraversal ( root :   TreeNode   |   null ) :   number []   { 
     const   ans :   number []   =   []; 
     if   ( ! root )   { 
         return   ans ; 
     } 
     const   stk :   TreeNode []   =   [ root ]; 
     while   ( stk . length )   { 
         const   {   left ,   right ,   val   }   =   stk . pop (); 
         ans . push ( val ); 
         left   &&   stk . push ( left ); 
         right   &&   stk . push ( right ); 
     } 
     ans . reverse (); 
     return   ans ; 
} 
 
 
 
 
方法三:Morris 实现后序遍历 
Morris 遍历无需使用栈,空间复杂度为 \(O(1)\) 。核心思想是:
遍历二叉树节点,
若当前节点 root 的右子树为空,将当前节点值添加至结果列表 \(ans\)  中,并将当前节点更新为 root.left 
若当前节点 root 的右子树不为空,找到右子树的最左节点 next(也即是 root 节点在中序遍历下的后继节点):
若后继节点 next 的左子树为空,将当前节点值添加至结果列表 \(ans\)  中,然后将后继节点的左子树指向当前节点 root,并将当前节点更新为 root.right。 
若后继节点 next 的左子树不为空,将后继节点左子树指向空(即解除 next 与 root 的指向关系),并将当前节点更新为 root.left。 
 
 
循环以上步骤,直至二叉树节点为空,遍历结束。 
最后返回结果列表的逆序即可。 
 
Morris 后序遍历跟 Morris 前序遍历思路一致,只是将前序的“根左右”变为“根右左”,最后逆序结果即可变成“左右根”。
 
时间复杂度 \(O(n)\) ,其中 \(n\)  是二叉树的节点数。空间复杂度 \(O(1)\) 。
Python3 Java C++ Go TypeScript 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 # Definition for a binary tree node. 
# class TreeNode: 
#     def __init__(self, val=0, left=None, right=None): 
#         self.val = val 
#         self.left = left 
#         self.right = right 
class   Solution : 
    def   postorderTraversal ( self ,  root :  Optional [ TreeNode ])  ->  List [ int ]: 
        ans  =  [] 
        while  root : 
            if  root . right  is  None : 
                ans . append ( root . val ) 
                root  =  root . left 
            else : 
                next  =  root . right 
                while  next . left  and  next . left  !=  root : 
                    next  =  next . left 
                if  next . left  !=  root : 
                    ans . append ( root . val ) 
                    next . left  =  root 
                    root  =  root . right 
                else : 
                    next . left  =  None 
                    root  =  root . left 
        return  ans [:: - 1 ] 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 /** 
 * Definition for a binary tree node. 
 * public class TreeNode { 
 *     int val; 
 *     TreeNode left; 
 *     TreeNode right; 
 *     TreeNode() {} 
 *     TreeNode(int val) { this.val = val; } 
 *     TreeNode(int val, TreeNode left, TreeNode right) { 
 *         this.val = val; 
 *         this.left = left; 
 *         this.right = right; 
 *     } 
 * } 
 */ 
class  Solution   { 
     public   List < Integer >   postorderTraversal ( TreeNode   root )   { 
         LinkedList < Integer >   ans   =   new   LinkedList <> (); 
         while   ( root   !=   null )   { 
             if   ( root . right   ==   null )   { 
                 ans . addFirst ( root . val ); 
                 root   =   root . left ; 
             }   else   { 
                 TreeNode   next   =   root . right ; 
                 while   ( next . left   !=   null   &&   next . left   !=   root )   { 
                     next   =   next . left ; 
                 } 
                 if   ( next . left   ==   null )   { 
                     ans . addFirst ( root . val ); 
                     next . left   =   root ; 
                     root   =   root . right ; 
                 }   else   { 
                     next . left   =   null ; 
                     root   =   root . left ; 
                 } 
             } 
         } 
         return   ans ; 
     } 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 /** 
 * Definition for a binary tree node. 
 * struct TreeNode { 
 *     int val; 
 *     TreeNode *left; 
 *     TreeNode *right; 
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} 
 * }; 
 */ 
class   Solution   { 
public : 
     vector < int >   postorderTraversal ( TreeNode *   root )   { 
         vector < int >   ans ; 
         while   ( root )   { 
             if   ( ! root -> right )   { 
                 ans . push_back ( root -> val ); 
                 root   =   root -> left ; 
             }   else   { 
                 TreeNode *   next   =   root -> right ; 
                 while   ( next -> left   &&   next -> left   !=   root )   { 
                     next   =   next -> left ; 
                 } 
                 if   ( next -> left   !=   root )   { 
                     ans . push_back ( root -> val ); 
                     next -> left   =   root ; 
                     root   =   root -> right ; 
                 }   else   { 
                     next -> left   =   nullptr ; 
                     root   =   root -> left ; 
                 } 
             } 
         } 
         reverse ( ans . begin (),   ans . end ()); 
         return   ans ; 
     } 
}; 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 /** 
 * Definition for a binary tree node. 
 * type TreeNode struct { 
 *     Val int 
 *     Left *TreeNode 
 *     Right *TreeNode 
 * } 
 */ 
func   postorderTraversal ( root   * TreeNode )   ( ans   [] int )   { 
     for   root   !=   nil   { 
         if   root . Right   ==   nil   { 
             ans   =   append ([] int { root . Val },   ans ... ) 
             root   =   root . Left 
         }   else   { 
             next   :=   root . Right 
             for   next . Left   !=   nil   &&   next . Left   !=   root   { 
                 next   =   next . Left 
             } 
             if   next . Left   ==   nil   { 
                 ans   =   append ([] int { root . Val },   ans ... ) 
                 next . Left   =   root 
                 root   =   root . Right 
             }   else   { 
                 next . Left   =   nil 
                 root   =   root . Left 
             } 
         } 
     } 
     return 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 /** 
 * Definition for a binary tree node. 
 * class TreeNode { 
 *     val: number 
 *     left: TreeNode | null 
 *     right: TreeNode | null 
 *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) { 
 *         this.val = (val===undefined ? 0 : val) 
 *         this.left = (left===undefined ? null : left) 
 *         this.right = (right===undefined ? null : right) 
 *     } 
 * } 
 */ 
function   postorderTraversal ( root :   TreeNode   |   null ) :   number []   { 
     const   ans :   number []   =   []; 
     while   ( root   !==   null )   { 
         const   {   val ,   left ,   right   }   =   root ; 
         if   ( right   ===   null )   { 
             ans . push ( val ); 
             root   =   left ; 
         }   else   { 
             let   next   =   right ; 
             while   ( next . left   !==   null   &&   next . left   !==   root )   { 
                 next   =   next . left ; 
             } 
             if   ( next . left   ===   null )   { 
                 ans . push ( val ); 
                 next . left   =   root ; 
                 root   =   right ; 
             }   else   { 
                 next . left   =   null ; 
                 root   =   left ; 
             } 
         } 
     } 
     return   ans . reverse (); 
}