二叉树 
      
    
      
      
      
        树 
      
    
      
      
      
        深度优先搜索 
      
    
   
  
    
      
       
  
  
    
      
    
    
      
       
  
题目描述 
给你一棵以 root 为根的二叉树和一个整数 target ,请你删除所有值为 target 的 叶子节点  。
注意,一旦删除值为 target 的叶子节点,它的父节点就可能变成叶子节点;如果新叶子节点的值恰好也是 target ,那么这个节点也应该被删除。
也就是说,你需要重复此过程直到不能继续删除。
 
示例 1: 
输入: root = [1,2,3,2,null,2,4], target = 2
输出: [1,null,3,null,4]
解释:
 上面左边的图中,绿色节点为叶子节点,且它们的值与 target 相同(同为 2 ),它们会被删除,得到中间的图。
有一个新的节点变成了叶子节点且它的值与 target 相同,所以将再次进行删除,从而得到最右边的图。
 
示例 2: 
输入: root = [1,3,3,3,2], target = 3
输出: [1,3,null,null,2]
 
示例 3: 
输入: root = [1,2,null,2,null,2], target = 2
输出: [1]
解释: 每一步都删除一个绿色的叶子节点(值为 2)。 
 
提示: 
    树中节点数量的范围是 [1, 3000]。 
    1 <= Node.val, target <= 1000 
解法 
方法一:递归 
我们先判断 \(root\)  节点是否为空,若为空,则返回空。
否则,递归地处理 \(root\)  的左右子树,即调用 root.left = removeLeafNodes(root.left, target) 和 root.right = removeLeafNodes(root.right, target)。
然后判断 \(root\)  节点是否为叶子节点,即判断 \(root.left\)  和 \(root.right\)  是否为空,且 \(root.val\)  是否等于 \(target\) 。若是,则返回空,否则返回 \(root\) 。
时间复杂度 \(O(n)\) ,空间复杂度 \(O(n)\) 。其中 \(n\)  为二叉树的节点个数。
Python3 Java C++ Go TypeScript 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 # Definition for a binary tree node. 
# class TreeNode: 
#     def __init__(self, val=0, left=None, right=None): 
#         self.val = val 
#         self.left = left 
#         self.right = right 
class   Solution : 
    def   removeLeafNodes ( 
        self ,  root :  Optional [ TreeNode ],  target :  int 
    )  ->  Optional [ TreeNode ]: 
        if  root  is  None : 
            return  None 
        root . left  =  self . removeLeafNodes ( root . left ,  target ) 
        root . right  =  self . removeLeafNodes ( root . right ,  target ) 
        if  root . left  is  None  and  root . right  is  None  and  root . val  ==  target : 
            return  None 
        return  root 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 /** 
 * Definition for a binary tree node. 
 * public class TreeNode { 
 *     int val; 
 *     TreeNode left; 
 *     TreeNode right; 
 *     TreeNode() {} 
 *     TreeNode(int val) { this.val = val; } 
 *     TreeNode(int val, TreeNode left, TreeNode right) { 
 *         this.val = val; 
 *         this.left = left; 
 *         this.right = right; 
 *     } 
 * } 
 */ 
class  Solution   { 
     public   TreeNode   removeLeafNodes ( TreeNode   root ,   int   target )   { 
         if   ( root   ==   null )   { 
             return   null ; 
         } 
         root . left   =   removeLeafNodes ( root . left ,   target ); 
         root . right   =   removeLeafNodes ( root . right ,   target ); 
         if   ( root . left   ==   null   &&   root . right   ==   null   &&   root . val   ==   target )   { 
             return   null ; 
         } 
         return   root ; 
     } 
} 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 /** 
 * Definition for a binary tree node. 
 * struct TreeNode { 
 *     int val; 
 *     TreeNode *left; 
 *     TreeNode *right; 
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} 
 * }; 
 */ 
class   Solution   { 
public : 
     TreeNode *   removeLeafNodes ( TreeNode *   root ,   int   target )   { 
         if   ( ! root )   { 
             return   nullptr ; 
         } 
         root -> left   =   removeLeafNodes ( root -> left ,   target ); 
         root -> right   =   removeLeafNodes ( root -> right ,   target ); 
         if   ( ! root -> left   &&   ! root -> right   &&   root -> val   ==   target )   { 
             return   nullptr ; 
         } 
         return   root ; 
     } 
}; 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 /** 
 * Definition for a binary tree node. 
 * type TreeNode struct { 
 *     Val int 
 *     Left *TreeNode 
 *     Right *TreeNode 
 * } 
 */ 
func   removeLeafNodes ( root   * TreeNode ,   target   int )   * TreeNode   { 
     if   root   ==   nil   { 
         return   nil 
     } 
     root . Left   =   removeLeafNodes ( root . Left ,   target ) 
     root . Right   =   removeLeafNodes ( root . Right ,   target ) 
     if   root . Left   ==   nil   &&   root . Right   ==   nil   &&   root . Val   ==   target   { 
         return   nil 
     } 
     return   root 
} 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 /** 
 * Definition for a binary tree node. 
 * class TreeNode { 
 *     val: number 
 *     left: TreeNode | null 
 *     right: TreeNode | null 
 *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) { 
 *         this.val = (val===undefined ? 0 : val) 
 *         this.left = (left===undefined ? null : left) 
 *         this.right = (right===undefined ? null : right) 
 *     } 
 * } 
 */ 
function   removeLeafNodes ( root :   TreeNode   |   null ,   target :   number ) :   TreeNode   |   null   { 
     if   ( ! root )   { 
         return   null ; 
     } 
     root . left   =   removeLeafNodes ( root . left ,   target ); 
     root . right   =   removeLeafNodes ( root . right ,   target ); 
     if   ( ! root . left   &&   ! root . right   &&   root . val   ==   target )   { 
         return   null ; 
     } 
     return   root ; 
} 
 
 
    
    
    
    
      
  
    
      
  
     
  GitHub