二叉树 
      
    
      
      
      
        广度优先搜索 
      
    
      
      
      
        树 
      
    
      
      
      
        深度优先搜索 
      
    
   
  
    
      
       
     
  
  
    
      
    
    
      
       
     
  
    
题目描述 
给你一棵二叉树的根节点 root ,请你返回 层数最深的叶子节点的和  。
 
示例 1: 
输入: root = [1,2,3,4,5,null,6,7,null,null,null,null,8]
输出: 15
 
示例 2: 
输入: root = [6,7,8,2,7,1,3,9,null,1,4,null,null,null,5]
输出: 19
 
 
提示: 
    树中节点数目在范围 [1, 104 ] 之间。 
    1 <= Node.val <= 100 
 
解法 
方法一:BFS 
我们可以使用广度优先搜索,逐层遍历二叉树,并在遍历到每一层时计算该层的节点值之和。遍历完成后,返回最后一层的节点值之和。
时间复杂度 \(O(n)\) ,空间复杂度 \(O(n)\) 。其中 \(n\)  是树中节点的数目。
Python3 Java C++ Go TypeScript Rust 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 # Definition for a binary tree node. 
# class TreeNode: 
#     def __init__(self, val=0, left=None, right=None): 
#         self.val = val 
#         self.left = left 
#         self.right = right 
class   Solution : 
    def   deepestLeavesSum ( self ,  root :  Optional [ TreeNode ])  ->  int : 
        q  =  deque ([ root ]) 
        while  q : 
            ans  =  0 
            for  _  in  range ( len ( q )): 
                node  =  q . popleft () 
                ans  +=  node . val 
                if  node . left : 
                    q . append ( node . left ) 
                if  node . right : 
                    q . append ( node . right ) 
        return  ans 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 /** 
 * Definition for a binary tree node. 
 * public class TreeNode { 
 *     int val; 
 *     TreeNode left; 
 *     TreeNode right; 
 *     TreeNode() {} 
 *     TreeNode(int val) { this.val = val; } 
 *     TreeNode(int val, TreeNode left, TreeNode right) { 
 *         this.val = val; 
 *         this.left = left; 
 *         this.right = right; 
 *     } 
 * } 
 */ 
class  Solution   { 
     public   int   deepestLeavesSum ( TreeNode   root )   { 
         Deque < TreeNode >   q   =   new   ArrayDeque <> (); 
         q . offer ( root ); 
         int   ans   =   0 ; 
         while   ( ! q . isEmpty ())   { 
             ans   =   0 ; 
             for   ( int   k   =   q . size ();   k   >   0 ;   -- k )   { 
                 TreeNode   node   =   q . poll (); 
                 ans   +=   node . val ; 
                 if   ( node . left   !=   null )   { 
                     q . offer ( node . left ); 
                 } 
                 if   ( node . right   !=   null )   { 
                     q . offer ( node . right ); 
                 } 
             } 
         } 
         return   ans ; 
     } 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 /** 
 * Definition for a binary tree node. 
 * struct TreeNode { 
 *     int val; 
 *     TreeNode *left; 
 *     TreeNode *right; 
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} 
 * }; 
 */ 
class   Solution   { 
public : 
     int   deepestLeavesSum ( TreeNode *   root )   { 
         int   ans   =   0 ; 
         queue < TreeNode *>   q {{ root }}; 
         while   ( ! q . empty ())   { 
             ans   =   0 ; 
             for   ( int   k   =   q . size ();   k ;   -- k )   { 
                 TreeNode *   node   =   q . front (); 
                 q . pop (); 
                 ans   +=   node -> val ; 
                 if   ( node -> left )   { 
                     q . push ( node -> left ); 
                 } 
                 if   ( node -> right )   { 
                     q . push ( node -> right ); 
                 } 
             } 
         } 
         return   ans ; 
     } 
}; 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 /** 
 * Definition for a binary tree node. 
 * type TreeNode struct { 
 *     Val int 
 *     Left *TreeNode 
 *     Right *TreeNode 
 * } 
 */ 
func   deepestLeavesSum ( root   * TreeNode )   ( ans   int )   { 
     q   :=   [] * TreeNode { root } 
     for   len ( q )   >   0   { 
         ans   =   0 
         for   k   :=   len ( q );   k   >   0 ;   k --   { 
             node   :=   q [ 0 ] 
             q   =   q [ 1 :] 
             ans   +=   node . Val 
             if   node . Left   !=   nil   { 
                 q   =   append ( q ,   node . Left ) 
             } 
             if   node . Right   !=   nil   { 
                 q   =   append ( q ,   node . Right ) 
             } 
         } 
     } 
     return 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 /** 
 * Definition for a binary tree node. 
 * class TreeNode { 
 *     val: number 
 *     left: TreeNode | null 
 *     right: TreeNode | null 
 *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) { 
 *         this.val = (val===undefined ? 0 : val) 
 *         this.left = (left===undefined ? null : left) 
 *         this.right = (right===undefined ? null : right) 
 *     } 
 * } 
 */ 
function   deepestLeavesSum ( root :   TreeNode   |   null ) :   number   { 
     let   q :   TreeNode []   =   [ root ]; 
     let   ans   =   0 ; 
     while   ( q . length )   { 
         const   nq :   TreeNode []   =   []; 
         ans   =   0 ; 
         for   ( const   {   val ,   left ,   right   }   of   q )   { 
             ans   +=   val ; 
             left   &&   nq . push ( left ); 
             right   &&   nq . push ( right ); 
         } 
         q   =   nq ; 
     } 
     return   ans ; 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 // Definition for a binary tree node. 
// #[derive(Debug, PartialEq, Eq)] 
// pub struct TreeNode { 
//   pub val: i32, 
//   pub left: Option<Rc<RefCell<TreeNode>>>, 
//   pub right: Option<Rc<RefCell<TreeNode>>>, 
// } 
// 
// impl TreeNode { 
//   #[inline] 
//   pub fn new(val: i32) -> Self { 
//     TreeNode { 
//       val, 
//       left: None, 
//       right: None 
//     } 
//   } 
// } 
use   std :: rc :: Rc ; 
use   std :: cell :: RefCell ; 
use   std :: collections :: VecDeque ; 
impl   Solution   { 
     pub   fn   deepest_leaves_sum ( root :   Option < Rc < RefCell < TreeNode >>> )   ->   i32   { 
         let   mut   q   =   VecDeque :: new (); 
         q . push_back ( root ); 
         let   mut   ans   =   0 ; 
         while   ! q . is_empty ()   { 
             ans   =   0 ; 
             for   _   in   0 .. q . len ()   { 
                 if   let   Some ( Some ( node ))   =   q . pop_front ()   { 
                     let   node   =   node . borrow (); 
                     ans   +=   node . val ; 
                     if   node . left . is_some ()   { 
                         q . push_back ( node . left . clone ()); 
                     } 
                     if   node . right . is_some ()   { 
                         q . push_back ( node . right . clone ()); 
                     } 
                 } 
             } 
         } 
         ans 
     } 
} 
 
 
 
 
方法二:DFS 
我们可以使用深度优先搜索,递归遍历二叉树,并在遍历的过程中记录当前节点的深度,以及最大深度和最深叶子节点的和。遍历到当前节点时,如果当前节点的深度等于最大深度,则将当前节点的值加到最深叶子节点的和中;如果当前节点的深度大于最大深度,则将最大深度更新为当前节点的深度,并将最深叶子节点的和更新为当前节点的值。
时间复杂度 \(O(n)\) ,空间复杂度 \(O(n)\) 。其中 \(n\)  是树中节点的数目。
Python3 Java C++ Go TypeScript C 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 # Definition for a binary tree node. 
# class TreeNode: 
#     def __init__(self, val=0, left=None, right=None): 
#         self.val = val 
#         self.left = left 
#         self.right = right 
class   Solution : 
    def   deepestLeavesSum ( self ,  root :  Optional [ TreeNode ])  ->  int : 
        def   dfs ( root ,  i ): 
            nonlocal  ans ,  mx 
            if  root  is  None : 
                return 
            if  i  ==  mx : 
                ans  +=  root . val 
            elif  i  >  mx : 
                ans  =  root . val 
                mx  =  i 
            dfs ( root . left ,  i  +  1 ) 
            dfs ( root . right ,  i  +  1 ) 
        ans  =  mx  =  0 
        dfs ( root ,  1 ) 
        return  ans 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 /** 
 * Definition for a binary tree node. 
 * public class TreeNode { 
 *     int val; 
 *     TreeNode left; 
 *     TreeNode right; 
 *     TreeNode() {} 
 *     TreeNode(int val) { this.val = val; } 
 *     TreeNode(int val, TreeNode left, TreeNode right) { 
 *         this.val = val; 
 *         this.left = left; 
 *         this.right = right; 
 *     } 
 * } 
 */ 
class  Solution   { 
     int   mx ; 
     int   ans ; 
     public   int   deepestLeavesSum ( TreeNode   root )   { 
         dfs ( root ,   1 ); 
         return   ans ; 
     } 
     private   void   dfs ( TreeNode   root ,   int   i )   { 
         if   ( root   ==   null )   { 
             return ; 
         } 
         if   ( i   >   mx )   { 
             mx   =   i ; 
             ans   =   root . val ; 
         }   else   if   ( i   ==   mx )   { 
             ans   +=   root . val ; 
         } 
         dfs ( root . left ,   i   +   1 ); 
         dfs ( root . right ,   i   +   1 ); 
     } 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 /** 
 * Definition for a binary tree node. 
 * struct TreeNode { 
 *     int val; 
 *     TreeNode *left; 
 *     TreeNode *right; 
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} 
 * }; 
 */ 
class   Solution   { 
public : 
     int   deepestLeavesSum ( TreeNode *   root )   { 
         int   mx   =   0 ,   ans   =   0 ; 
         auto   dfs   =   [ & ]( this   auto &&   dfs ,   TreeNode *   root ,   int   i )   { 
             if   ( ! root )   { 
                 return ; 
             } 
             if   ( i   ==   mx )   { 
                 ans   +=   root -> val ; 
             }   else   if   ( i   >   mx )   { 
                 mx   =   i ; 
                 ans   =   root -> val ; 
             } 
             dfs ( root -> left ,   i   +   1 ); 
             dfs ( root -> right ,   i   +   1 ); 
         }; 
         dfs ( root ,   1 ); 
         return   ans ; 
     } 
}; 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 /** 
 * Definition for a binary tree node. 
 * type TreeNode struct { 
 *     Val int 
 *     Left *TreeNode 
 *     Right *TreeNode 
 * } 
 */ 
func   deepestLeavesSum ( root   * TreeNode )   int   { 
     ans ,   mx   :=   0 ,   0 
     var   dfs   func ( * TreeNode ,   int ) 
     dfs   =   func ( root   * TreeNode ,   i   int )   { 
         if   root   ==   nil   { 
             return 
         } 
         if   i   ==   mx   { 
             ans   +=   root . Val 
         }   else   if   i   >   mx   { 
             mx   =   i 
             ans   =   root . Val 
         } 
         dfs ( root . Left ,   i + 1 ) 
         dfs ( root . Right ,   i + 1 ) 
     } 
     dfs ( root ,   1 ) 
     return   ans 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 /** 
 * Definition for a binary tree node. 
 * class TreeNode { 
 *     val: number 
 *     left: TreeNode | null 
 *     right: TreeNode | null 
 *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) { 
 *         this.val = (val===undefined ? 0 : val) 
 *         this.left = (left===undefined ? null : left) 
 *         this.right = (right===undefined ? null : right) 
 *     } 
 * } 
 */ 
function   deepestLeavesSum ( root :   TreeNode   |   null ) :   number   { 
     let   [ ans ,   mx ]   =   [ 0 ,   0 ]; 
     const   dfs   =   ( root :   TreeNode   |   null ,   i :   number )   =>   { 
         if   ( ! root )   { 
             return ; 
         } 
         if   ( i   >   mx )   { 
             mx   =   i ; 
             ans   =   root . val ; 
         }   else   if   ( i   ===   mx )   { 
             ans   +=   root . val ; 
         } 
         dfs ( root . left ,   i   +   1 ); 
         dfs ( root . right ,   i   +   1 ); 
     }; 
     dfs ( root ,   1 ); 
     return   ans ; 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 /** 
 * Definition for a binary tree node. 
 * struct TreeNode { 
 *     int val; 
 *     struct TreeNode *left; 
 *     struct TreeNode *right; 
 * }; 
 */ 
void   dfs ( struct   TreeNode *   root ,   int   depth ,   int *   maxDepth ,   int *   res )   { 
     if   ( ! root -> left   &&   ! root -> right )   { 
         if   ( depth   ==   * maxDepth )   { 
             * res   +=   root -> val ; 
         }   else   if   ( depth   >   * maxDepth )   { 
             * maxDepth   =   depth ; 
             * res   =   root -> val ; 
         } 
         return ; 
     } 
     if   ( root -> left )   { 
         dfs ( root -> left ,   depth   +   1 ,   maxDepth ,   res ); 
     } 
     if   ( root -> right )   { 
         dfs ( root -> right ,   depth   +   1 ,   maxDepth ,   res ); 
     } 
} 
int   deepestLeavesSum ( struct   TreeNode *   root )   { 
     int   res   =   0 ; 
     int   maxDepth   =   0 ; 
     dfs ( root ,   0 ,   & maxDepth ,   & res ); 
     return   res ; 
} 
 
 
 
 
  
  
  
    
    
    
    
      
  
    
      
  
     
   
  GitHub