
题目描述
给你一个 m * n
的矩阵,矩阵中的元素不是 0
就是 1
,请你统计并返回其中完全由 1
组成的 正方形 子矩阵的个数。
示例 1:
输入:matrix =
[
[0,1,1,1],
[1,1,1,1],
[0,1,1,1]
]
输出:15
解释:
边长为 1 的正方形有 10 个。
边长为 2 的正方形有 4 个。
边长为 3 的正方形有 1 个。
正方形的总数 = 10 + 4 + 1 = 15.
示例 2:
输入:matrix =
[
[1,0,1],
[1,1,0],
[1,1,0]
]
输出:7
解释:
边长为 1 的正方形有 6 个。
边长为 2 的正方形有 1 个。
正方形的总数 = 6 + 1 = 7.
提示:
1 <= arr.length <= 300
1 <= arr[0].length <= 300
0 <= arr[i][j] <= 1
解法
方法一:动态规划
我们定义 \(f[i][j]\) 为以 \((i,j)\) 为右下角的正方形子矩阵的边长,初始时 \(f[i][j] = 0\),答案为 \(\sum_{i,j} f[i][j]\)。
考虑 \(f[i][j]\) 如何进行状态转移。
- 当 \(\text{matrix}[i][j] = 0\) 时,有 \(f[i][j] = 0\)。
- 当 \(\text{matrix}[i][j] = 1\) 时,状态 \(f[i][j]\) 的值取决于其上、左、左上三个位置的值:
- 如果 \(i = 0\) 或 \(j = 0\),则 \(f[i][j] = 1\)。
- 否则 \(f[i][j] = \min(f[i-1][j-1], f[i-1][j], f[i][j-1]) + 1\)。
答案为 \(\sum_{i,j} f[i][j]\)。
时间复杂度 \(O(m \times n)\),空间复杂度 \(O(m \times n)\)。其中 \(m\) 和 \(n\) 分别为矩阵的行数和列数。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | class Solution:
def countSquares(self, matrix: List[List[int]]) -> int:
m, n = len(matrix), len(matrix[0])
f = [[0] * n for _ in range(m)]
ans = 0
for i, row in enumerate(matrix):
for j, v in enumerate(row):
if v == 0:
continue
if i == 0 or j == 0:
f[i][j] = 1
else:
f[i][j] = min(f[i - 1][j - 1], f[i - 1][j], f[i][j - 1]) + 1
ans += f[i][j]
return ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | class Solution {
public int countSquares(int[][] matrix) {
int m = matrix.length;
int n = matrix[0].length;
int[][] f = new int[m][n];
int ans = 0;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (matrix[i][j] == 0) {
continue;
}
if (i == 0 || j == 0) {
f[i][j] = 1;
} else {
f[i][j] = Math.min(f[i - 1][j - 1], Math.min(f[i - 1][j], f[i][j - 1])) + 1;
}
ans += f[i][j];
}
}
return ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | class Solution {
public:
int countSquares(vector<vector<int>>& matrix) {
int m = matrix.size(), n = matrix[0].size();
int ans = 0;
vector<vector<int>> f(m, vector<int>(n));
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (matrix[i][j] == 0) {
continue;
}
if (i == 0 || j == 0) {
f[i][j] = 1;
} else {
f[i][j] = min(f[i - 1][j - 1], min(f[i - 1][j], f[i][j - 1])) + 1;
}
ans += f[i][j];
}
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | func countSquares(matrix [][]int) int {
m, n, ans := len(matrix), len(matrix[0]), 0
f := make([][]int, m)
for i := range f {
f[i] = make([]int, n)
}
for i, row := range matrix {
for j, v := range row {
if v == 0 {
continue
}
if i == 0 || j == 0 {
f[i][j] = 1
} else {
f[i][j] = min(f[i-1][j-1], min(f[i-1][j], f[i][j-1])) + 1
}
ans += f[i][j]
}
}
return ans
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | function countSquares(matrix: number[][]): number {
const m = matrix.length;
const n = matrix[0].length;
const f: number[][] = Array.from({ length: m }, () => Array(n).fill(0));
let ans = 0;
for (let i = 0; i < m; i++) {
for (let j = 0; j < n; j++) {
if (matrix[i][j] === 0) {
continue;
}
if (i === 0 || j === 0) {
f[i][j] = 1;
} else {
f[i][j] = Math.min(f[i - 1][j - 1], Math.min(f[i - 1][j], f[i][j - 1])) + 1;
}
ans += f[i][j];
}
}
return ans;
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | impl Solution {
pub fn count_squares(matrix: Vec<Vec<i32>>) -> i32 {
let m = matrix.len();
let n = matrix[0].len();
let mut f = vec![vec![0; n]; m];
let mut ans = 0;
for i in 0..m {
for j in 0..n {
if matrix[i][j] == 0 {
continue;
}
if i == 0 || j == 0 {
f[i][j] = 1;
} else {
f[i][j] = std::cmp::min(f[i - 1][j - 1], std::cmp::min(f[i - 1][j], f[i][j - 1])) + 1;
}
ans += f[i][j];
}
}
ans
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | /**
* @param {number[][]} matrix
* @return {number}
*/
var countSquares = function (matrix) {
const m = matrix.length;
const n = matrix[0].length;
const f = Array.from({ length: m }, () => Array(n).fill(0));
let ans = 0;
for (let i = 0; i < m; i++) {
for (let j = 0; j < n; j++) {
if (matrix[i][j] === 0) {
continue;
}
if (i === 0 || j === 0) {
f[i][j] = 1;
} else {
f[i][j] = Math.min(f[i - 1][j - 1], Math.min(f[i - 1][j], f[i][j - 1])) + 1;
}
ans += f[i][j];
}
}
return ans;
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | public class Solution {
public int CountSquares(int[][] matrix) {
int m = matrix.Length;
int n = matrix[0].Length;
int[,] f = new int[m, n];
int ans = 0;
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (matrix[i][j] == 0) {
continue;
}
if (i == 0 || j == 0) {
f[i, j] = 1;
} else {
f[i, j] = Math.Min(f[i - 1, j - 1], Math.Min(f[i - 1, j], f[i, j - 1])) + 1;
}
ans += f[i, j];
}
}
return ans;
}
}
|