二叉树 
      
    
      
      
      
        广度优先搜索 
      
    
      
      
      
        树 
      
    
      
      
      
        深度优先搜索 
      
    
   
  
    
      
       
     
  
  
    
      
    
    
      
       
     
  
    
题目描述 
给你一个二叉树的根节点 root。设根节点位于二叉树的第 1 层,而根节点的子节点位于第 2 层,依此类推。
请返回层内元素之和 最大  的那几层(可能只有一层)的层号,并返回其中 最小  的那个。
 
示例 1: 
输入: root = [1,7,0,7,-8,null,null]
输出: 2
解释: 
第 1 层各元素之和为 1,
第 2 层各元素之和为 7 + 0 = 7,
第 3 层各元素之和为 7 + -8 = -1,
所以我们返回第 2 层的层号,它的层内元素之和最大。
 
示例 2: 
输入: root = [989,null,10250,98693,-89388,null,null,null,-32127]
输出: 2
 
 
提示: 
    树中的节点数在  [1, 104 ]范围内 
    -105  <= Node.val <= 105  
 
解法 
方法一:BFS 
BFS 层次遍历,求每一层的节点和,找出节点和最大的层,若有多个层的节点和最大,则返回最小的层。
时间复杂度 \(O(n)\) ,空间复杂度 \(O(n)\) 。其中 \(n\)  为二叉树的节点数。
Python3 Java C++ Go TypeScript 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 # Definition for a binary tree node. 
# class TreeNode: 
#     def __init__(self, val=0, left=None, right=None): 
#         self.val = val 
#         self.left = left 
#         self.right = right 
class   Solution : 
    def   maxLevelSum ( self ,  root :  Optional [ TreeNode ])  ->  int : 
        q  =  deque ([ root ]) 
        mx  =  - inf 
        i  =  0 
        while  q : 
            i  +=  1 
            s  =  0 
            for  _  in  range ( len ( q )): 
                node  =  q . popleft () 
                s  +=  node . val 
                if  node . left : 
                    q . append ( node . left ) 
                if  node . right : 
                    q . append ( node . right ) 
            if  mx  <  s : 
                mx  =  s 
                ans  =  i 
        return  ans 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 /** 
 * Definition for a binary tree node. 
 * public class TreeNode { 
 *     int val; 
 *     TreeNode left; 
 *     TreeNode right; 
 *     TreeNode() {} 
 *     TreeNode(int val) { this.val = val; } 
 *     TreeNode(int val, TreeNode left, TreeNode right) { 
 *         this.val = val; 
 *         this.left = left; 
 *         this.right = right; 
 *     } 
 * } 
 */ 
class  Solution   { 
     public   int   maxLevelSum ( TreeNode   root )   { 
         Deque < TreeNode >   q   =   new   ArrayDeque <> (); 
         q . offer ( root ); 
         int   mx   =   Integer . MIN_VALUE ; 
         int   i   =   0 ; 
         int   ans   =   0 ; 
         while   ( ! q . isEmpty ())   { 
             ++ i ; 
             int   s   =   0 ; 
             for   ( int   n   =   q . size ();   n   >   0 ;   -- n )   { 
                 TreeNode   node   =   q . pollFirst (); 
                 s   +=   node . val ; 
                 if   ( node . left   !=   null )   { 
                     q . offer ( node . left ); 
                 } 
                 if   ( node . right   !=   null )   { 
                     q . offer ( node . right ); 
                 } 
             } 
             if   ( mx   <   s )   { 
                 mx   =   s ; 
                 ans   =   i ; 
             } 
         } 
         return   ans ; 
     } 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 /** 
 * Definition for a binary tree node. 
 * struct TreeNode { 
 *     int val; 
 *     TreeNode *left; 
 *     TreeNode *right; 
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} 
 * }; 
 */ 
class   Solution   { 
public : 
     int   maxLevelSum ( TreeNode *   root )   { 
         queue < TreeNode *>   q {{ root }}; 
         int   mx   =   INT_MIN ; 
         int   ans   =   0 ; 
         int   i   =   0 ; 
         while   ( ! q . empty ())   { 
             ++ i ; 
             int   s   =   0 ; 
             for   ( int   n   =   q . size ();   n ;   -- n )   { 
                 root   =   q . front (); 
                 q . pop (); 
                 s   +=   root -> val ; 
                 if   ( root -> left )   q . push ( root -> left ); 
                 if   ( root -> right )   q . push ( root -> right ); 
             } 
             if   ( mx   <   s )   mx   =   s ,   ans   =   i ; 
         } 
         return   ans ; 
     } 
}; 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 /** 
 * Definition for a binary tree node. 
 * type TreeNode struct { 
 *     Val int 
 *     Left *TreeNode 
 *     Right *TreeNode 
 * } 
 */ 
func   maxLevelSum ( root   * TreeNode )   int   { 
     q   :=   [] * TreeNode { root } 
     mx   :=   - 0x3f3f3f3f 
     i   :=   0 
     ans   :=   0 
     for   len ( q )   >   0   { 
         i ++ 
         s   :=   0 
         for   n   :=   len ( q );   n   >   0 ;   n --   { 
             root   =   q [ 0 ] 
             q   =   q [ 1 :] 
             s   +=   root . Val 
             if   root . Left   !=   nil   { 
                 q   =   append ( q ,   root . Left ) 
             } 
             if   root . Right   !=   nil   { 
                 q   =   append ( q ,   root . Right ) 
             } 
         } 
         if   mx   <   s   { 
             mx   =   s 
             ans   =   i 
         } 
     } 
     return   ans 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 /** 
 * Definition for a binary tree node. 
 * class TreeNode { 
 *     val: number 
 *     left: TreeNode | null 
 *     right: TreeNode | null 
 *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) { 
 *         this.val = (val===undefined ? 0 : val) 
 *         this.left = (left===undefined ? null : left) 
 *         this.right = (right===undefined ? null : right) 
 *     } 
 * } 
 */ 
function   maxLevelSum ( root :   TreeNode   |   null ) :   number   { 
     const   queue   =   [ root ]; 
     let   res   =   1 ; 
     let   max   =   - Infinity ; 
     let   h   =   1 ; 
     while   ( queue . length   !==   0 )   { 
         const   n   =   queue . length ; 
         let   sum   =   0 ; 
         for   ( let   i   =   0 ;   i   <   n ;   i ++ )   { 
             const   {   val ,   left ,   right   }   =   queue . shift (); 
             sum   +=   val ; 
             left   &&   queue . push ( left ); 
             right   &&   queue . push ( right ); 
         } 
         if   ( sum   >   max )   { 
             max   =   sum ; 
             res   =   h ; 
         } 
         h ++ ; 
     } 
     return   res ; 
} 
 
 
 
 
方法二:DFS 
我们也可以使用 DFS 求解。我们用一个数组 \(s\)  来存储每一层的节点和,数组的下标表示层数,数组的值表示节点和。我们使用 DFS 遍历二叉树,将每个节点的值加到对应层数的节点和上。最后,我们返回 \(s\)  中的最大值对应的下标即可。
时间复杂度 \(O(n)\) ,空间复杂度 \(O(n)\) 。其中 \(n\)  为二叉树的节点数。
Python3 Java C++ Go 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 # Definition for a binary tree node. 
# class TreeNode: 
#     def __init__(self, val=0, left=None, right=None): 
#         self.val = val 
#         self.left = left 
#         self.right = right 
class   Solution : 
    def   maxLevelSum ( self ,  root :  Optional [ TreeNode ])  ->  int : 
        def   dfs ( node ,  i ): 
            if  node  is  None : 
                return 
            if  i  ==  len ( s ): 
                s . append ( node . val ) 
            else : 
                s [ i ]  +=  node . val 
            dfs ( node . left ,  i  +  1 ) 
            dfs ( node . right ,  i  +  1 ) 
        s  =  [] 
        dfs ( root ,  0 ) 
        return  s . index ( max ( s ))  +  1 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 /** 
 * Definition for a binary tree node. 
 * public class TreeNode { 
 *     int val; 
 *     TreeNode left; 
 *     TreeNode right; 
 *     TreeNode() {} 
 *     TreeNode(int val) { this.val = val; } 
 *     TreeNode(int val, TreeNode left, TreeNode right) { 
 *         this.val = val; 
 *         this.left = left; 
 *         this.right = right; 
 *     } 
 * } 
 */ 
class  Solution   { 
     private   List < Integer >   s   =   new   ArrayList <> (); 
     public   int   maxLevelSum ( TreeNode   root )   { 
         dfs ( root ,   0 ); 
         int   mx   =   Integer . MIN_VALUE ; 
         int   ans   =   0 ; 
         for   ( int   i   =   0 ;   i   <   s . size ();   ++ i )   { 
             if   ( mx   <   s . get ( i ))   { 
                 mx   =   s . get ( i ); 
                 ans   =   i   +   1 ; 
             } 
         } 
         return   ans ; 
     } 
     private   void   dfs ( TreeNode   root ,   int   i )   { 
         if   ( root   ==   null )   { 
             return ; 
         } 
         if   ( i   ==   s . size ())   { 
             s . add ( root . val ); 
         }   else   { 
             s . set ( i ,   s . get ( i )   +   root . val ); 
         } 
         dfs ( root . left ,   i   +   1 ); 
         dfs ( root . right ,   i   +   1 ); 
     } 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 /** 
 * Definition for a binary tree node. 
 * struct TreeNode { 
 *     int val; 
 *     TreeNode *left; 
 *     TreeNode *right; 
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} 
 * }; 
 */ 
class   Solution   { 
public : 
     int   maxLevelSum ( TreeNode *   root )   { 
         vector < int >   s ; 
         dfs ( root ,   0 ,   s ); 
         int   mx   =   INT_MIN ; 
         int   ans   =   0 ; 
         for   ( int   i   =   0 ;   i   <   s . size ();   ++ i ) 
             if   ( mx   <   s [ i ])   mx   =   s [ i ],   ans   =   i   +   1 ; 
         return   ans ; 
     } 
     void   dfs ( TreeNode *   root ,   int   i ,   vector < int >&   s )   { 
         if   ( ! root )   return ; 
         if   ( s . size ()   ==   i ) 
             s . push_back ( root -> val ); 
         else 
             s [ i ]   +=   root -> val ; 
         dfs ( root -> left ,   i   +   1 ,   s ); 
         dfs ( root -> right ,   i   +   1 ,   s ); 
     } 
}; 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 /** 
 * Definition for a binary tree node. 
 * type TreeNode struct { 
 *     Val int 
 *     Left *TreeNode 
 *     Right *TreeNode 
 * } 
 */ 
func   maxLevelSum ( root   * TreeNode )   int   { 
     s   :=   [] int {} 
     var   dfs   func ( * TreeNode ,   int ) 
     dfs   =   func ( root   * TreeNode ,   i   int )   { 
         if   root   ==   nil   { 
             return 
         } 
         if   len ( s )   ==   i   { 
             s   =   append ( s ,   root . Val ) 
         }   else   { 
             s [ i ]   +=   root . Val 
         } 
         dfs ( root . Left ,   i + 1 ) 
         dfs ( root . Right ,   i + 1 ) 
     } 
     dfs ( root ,   0 ) 
     ans ,   mx   :=   0 ,   - 0x3f3f3f3f 
     for   i ,   v   :=   range   s   { 
         if   mx   <   v   { 
             mx   =   v 
             ans   =   i   +   1 
         } 
     } 
     return   ans 
} 
 
 
 
 
  
  
  
    
    
    
    
      
  
    
      
  
     
   
  GitHub