二叉树 
      
    
      
      
      
        栈 
      
    
      
      
      
        树 
      
    
      
      
      
        深度优先搜索 
      
    
      
      
      
        链表 
      
    
   
  
    
      
       
     
  
  
    
      
    
    
      
       
     
  
题目描述 
给你二叉树的根结点 root ,请你将它展开为一个单链表:
    展开后的单链表应该同样使用 TreeNode ,其中 right 子指针指向链表中下一个结点,而左子指针始终为 null 。 
    展开后的单链表应该与二叉树 先序遍历   顺序相同。 
 
 
示例 1: 
输入: root = [1,2,5,3,4,null,6]
输出: [1,null,2,null,3,null,4,null,5,null,6]
 
示例 2: 
输入: root = []
输出: []
 
示例 3: 
输入: root = [0]
输出: [0]
 
 
提示: 
    树中结点数在范围 [0, 2000] 内 
    -100 <= Node.val <= 100 
 
 
进阶: 你可以使用原地算法(O(1) 额外空间)展开这棵树吗?
解法 
方法一:寻找前驱节点 
先序遍历的访问顺序是“根、左子树、右子树”,左子树最后一个节点访问完后,接着会访问根节点的右子树节点。
因此,对于当前节点,如果其左子节点不为空,我们找到左子树的最右节点,作为前驱节点,然后将当前节点的右子节点赋给前驱节点的右子节点。然后将当前节点的左子节点赋给当前节点的右子节点,并将当前节点的左子节点置为空。然后将当前节点的右子节点作为下一个节点,继续处理,直至所有节点处理完毕。
时间复杂度 \(O(n)\) ,其中 \(n\)  是树中节点的个数。空间复杂度 \(O(1)\) 。
Python3 Java C++ Go TypeScript Rust JavaScript 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 # Definition for a binary tree node. 
# class TreeNode: 
#     def __init__(self, val=0, left=None, right=None): 
#         self.val = val 
#         self.left = left 
#         self.right = right 
class   Solution : 
    def   flatten ( self ,  root :  Optional [ TreeNode ])  ->  None : 
         """ 
        Do not return anything, modify root in-place instead. 
        """ 
        while  root : 
            if  root . left : 
                pre  =  root . left 
                while  pre . right : 
                    pre  =  pre . right 
                pre . right  =  root . right 
                root . right  =  root . left 
                root . left  =  None 
            root  =  root . right 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 /** 
 * Definition for a binary tree node. 
 * public class TreeNode { 
 *     int val; 
 *     TreeNode left; 
 *     TreeNode right; 
 *     TreeNode() {} 
 *     TreeNode(int val) { this.val = val; } 
 *     TreeNode(int val, TreeNode left, TreeNode right) { 
 *         this.val = val; 
 *         this.left = left; 
 *         this.right = right; 
 *     } 
 * } 
 */ 
class  Solution   { 
     public   void   flatten ( TreeNode   root )   { 
         while   ( root   !=   null )   { 
             if   ( root . left   !=   null )   { 
                 // 找到当前节点左子树的最右节点 
                 TreeNode   pre   =   root . left ; 
                 while   ( pre . right   !=   null )   { 
                     pre   =   pre . right ; 
                 } 
                 // 将左子树的最右节点指向原来的右子树 
                 pre . right   =   root . right ; 
                 // 将当前节点指向左子树 
                 root . right   =   root . left ; 
                 root . left   =   null ; 
             } 
             root   =   root . right ; 
         } 
     } 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 /** 
 * Definition for a binary tree node. 
 * struct TreeNode { 
 *     int val; 
 *     TreeNode *left; 
 *     TreeNode *right; 
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} 
 * }; 
 */ 
class   Solution   { 
public : 
     void   flatten ( TreeNode *   root )   { 
         while   ( root )   { 
             if   ( root -> left )   { 
                 TreeNode *   pre   =   root -> left ; 
                 while   ( pre -> right )   { 
                     pre   =   pre -> right ; 
                 } 
                 pre -> right   =   root -> right ; 
                 root -> right   =   root -> left ; 
                 root -> left   =   nullptr ; 
             } 
             root   =   root -> right ; 
         } 
     } 
}; 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 /** 
 * Definition for a binary tree node. 
 * type TreeNode struct { 
 *     Val int 
 *     Left *TreeNode 
 *     Right *TreeNode 
 * } 
 */ 
func   flatten ( root   * TreeNode )   { 
     for   root   !=   nil   { 
         if   root . Left   !=   nil   { 
             pre   :=   root . Left 
             for   pre . Right   !=   nil   { 
                 pre   =   pre . Right 
             } 
             pre . Right   =   root . Right 
             root . Right   =   root . Left 
             root . Left   =   nil 
         } 
         root   =   root . Right 
     } 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 /** 
 * Definition for a binary tree node. 
 * class TreeNode { 
 *     val: number 
 *     left: TreeNode | null 
 *     right: TreeNode | null 
 *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) { 
 *         this.val = (val===undefined ? 0 : val) 
 *         this.left = (left===undefined ? null : left) 
 *         this.right = (right===undefined ? null : right) 
 *     } 
 * } 
 */ 
/** 
 Do not return anything, modify root in-place instead. 
 */ 
function   flatten ( root :   TreeNode   |   null ) :   void   { 
     while   ( root   !==   null )   { 
         if   ( root . left   !==   null )   { 
             let   pre   =   root . left ; 
             while   ( pre . right   !==   null )   { 
                 pre   =   pre . right ; 
             } 
             pre . right   =   root . right ; 
             root . right   =   root . left ; 
             root . left   =   null ; 
         } 
         root   =   root . right ; 
     } 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 // Definition for a binary tree node. 
// #[derive(Debug, PartialEq, Eq)] 
// pub struct TreeNode { 
//   pub val: i32, 
//   pub left: Option<Rc<RefCell<TreeNode>>>, 
//   pub right: Option<Rc<RefCell<TreeNode>>>, 
// } 
// 
// impl TreeNode { 
//   #[inline] 
//   pub fn new(val: i32) -> Self { 
//     TreeNode { 
//       val, 
//       left: None, 
//       right: None 
//     } 
//   } 
// } 
use   std :: cell :: RefCell ; 
use   std :: rc :: Rc ; 
impl   Solution   { 
     #[allow(dead_code)] 
     pub   fn   flatten ( root :   & mut   Option < Rc < RefCell < TreeNode >>> )   { 
         if   root . is_none ()   { 
             return ; 
         } 
         let   mut   v :   Vec < Option < Rc < RefCell < TreeNode >>>>   =   Vec :: new (); 
         // Initialize the vector 
         Self :: pre_order_traverse ( & mut   v ,   root ); 
         // Traverse the vector 
         let   n   =   v . len (); 
         for   i   in   0 .. n   -   1   { 
             v [ i ]. as_ref (). unwrap (). borrow_mut (). left   =   None ; 
             v [ i ]. as_ref (). unwrap (). borrow_mut (). right   =   v [ i   +   1 ]. clone (); 
         } 
     } 
     #[allow(dead_code)] 
     fn   pre_order_traverse ( 
         v :   & mut   Vec < Option < Rc < RefCell < TreeNode >>>> , 
         root :   & Option < Rc < RefCell < TreeNode >>> , 
     )   { 
         if   root . is_none ()   { 
             return ; 
         } 
         v . push ( root . clone ()); 
         let   left   =   root . as_ref (). unwrap (). borrow (). left . clone (); 
         let   right   =   root . as_ref (). unwrap (). borrow (). right . clone (); 
         Self :: pre_order_traverse ( v ,   & left ); 
         Self :: pre_order_traverse ( v ,   & right ); 
     } 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 /** 
 * Definition for a binary tree node. 
 * function TreeNode(val, left, right) { 
 *     this.val = (val===undefined ? 0 : val) 
 *     this.left = (left===undefined ? null : left) 
 *     this.right = (right===undefined ? null : right) 
 * } 
 */ 
/** 
 * @param {TreeNode} root 
 * @return {void} Do not return anything, modify root in-place instead. 
 */ 
var   flatten   =   function   ( root )   { 
     while   ( root )   { 
         if   ( root . left )   { 
             let   pre   =   root . left ; 
             while   ( pre . right )   { 
                 pre   =   pre . right ; 
             } 
             pre . right   =   root . right ; 
             root . right   =   root . left ; 
             root . left   =   null ; 
         } 
         root   =   root . right ; 
     } 
}; 
 
 
 
 
方法二