二叉树 
      
    
      
      
      
        广度优先搜索 
      
    
      
      
      
        树 
      
    
      
      
      
        深度优先搜索 
      
    
   
  
    
      
       
     
  
  
    
      
    
    
      
       
     
  
题目描述 
给你二叉树的根节点 root 和一个表示目标和的整数 targetSum 。判断该树中是否存在 根节点到叶子节点  的路径,这条路径上所有节点值相加等于目标和 targetSum 。如果存在,返回 true ;否则,返回 false 。
叶子节点  是指没有子节点的节点。
 
示例 1: 
输入: root = [5,4,8,11,null,13,4,7,2,null,null,null,1], targetSum = 22
输出: true
解释: 等于目标和的根节点到叶节点路径如上图所示。
 
示例 2: 
输入: root = [1,2,3], targetSum = 5
输出: false
解释: 树中存在两条根节点到叶子节点的路径:
(1 --> 2): 和为 3
(1 --> 3): 和为 4
不存在 sum = 5 的根节点到叶子节点的路径。 
示例 3: 
输入: root = [], targetSum = 0
输出: false
解释: 由于树是空的,所以不存在根节点到叶子节点的路径。
 
 
提示: 
    树中节点的数目在范围 [0, 5000] 内 
    -1000 <= Node.val <= 1000 
    -1000 <= targetSum <= 1000 
 
解法 
方法一:递归 
从根节点开始,递归地对树进行遍历,并在遍历过程中更新节点的值为从根节点到该节点的路径和。当遍历到叶子节点时,判断该路径和是否等于目标值,如果相等则返回 true,否则返回 false。
时间复杂度 \(O(n)\) ,其中 \(n\)  是二叉树的节点数。对每个节点访问一次。
Python3 Java C++ Go TypeScript Rust JavaScript 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 # Definition for a binary tree node. 
# class TreeNode: 
#     def __init__(self, val=0, left=None, right=None): 
#         self.val = val 
#         self.left = left 
#         self.right = right 
class   Solution : 
    def   hasPathSum ( self ,  root :  Optional [ TreeNode ],  targetSum :  int )  ->  bool : 
        def   dfs ( root ,  s ): 
            if  root  is  None : 
                return  False 
            s  +=  root . val 
            if  root . left  is  None  and  root . right  is  None  and  s  ==  targetSum : 
                return  True 
            return  dfs ( root . left ,  s )  or  dfs ( root . right ,  s ) 
        return  dfs ( root ,  0 ) 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 /** 
 * Definition for a binary tree node. 
 * public class TreeNode { 
 *     int val; 
 *     TreeNode left; 
 *     TreeNode right; 
 *     TreeNode() {} 
 *     TreeNode(int val) { this.val = val; } 
 *     TreeNode(int val, TreeNode left, TreeNode right) { 
 *         this.val = val; 
 *         this.left = left; 
 *         this.right = right; 
 *     } 
 * } 
 */ 
class  Solution   { 
     public   boolean   hasPathSum ( TreeNode   root ,   int   targetSum )   { 
         return   dfs ( root ,   targetSum ); 
     } 
     private   boolean   dfs ( TreeNode   root ,   int   s )   { 
         if   ( root   ==   null )   { 
             return   false ; 
         } 
         s   -=   root . val ; 
         if   ( root . left   ==   null   &&   root . right   ==   null   &&   s   ==   0 )   { 
             return   true ; 
         } 
         return   dfs ( root . left ,   s )   ||   dfs ( root . right ,   s ); 
     } 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 /** 
 * Definition for a binary tree node. 
 * struct TreeNode { 
 *     int val; 
 *     TreeNode *left; 
 *     TreeNode *right; 
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} 
 * }; 
 */ 
class   Solution   { 
public : 
     bool   hasPathSum ( TreeNode *   root ,   int   targetSum )   { 
         function < bool ( TreeNode * ,   int ) >   dfs   =   [ & ]( TreeNode *   root ,   int   s )   ->   int   { 
             if   ( ! root )   return   false ; 
             s   +=   root -> val ; 
             if   ( ! root -> left   &&   ! root -> right   &&   s   ==   targetSum )   return   true ; 
             return   dfs ( root -> left ,   s )   ||   dfs ( root -> right ,   s ); 
         }; 
         return   dfs ( root ,   0 ); 
     } 
}; 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 /** 
 * Definition for a binary tree node. 
 * type TreeNode struct { 
 *     Val int 
 *     Left *TreeNode 
 *     Right *TreeNode 
 * } 
 */ 
func   hasPathSum ( root   * TreeNode ,   targetSum   int )   bool   { 
     var   dfs   func ( * TreeNode ,   int )   bool 
     dfs   =   func ( root   * TreeNode ,   s   int )   bool   { 
         if   root   ==   nil   { 
             return   false 
         } 
         s   +=   root . Val 
         if   root . Left   ==   nil   &&   root . Right   ==   nil   &&   s   ==   targetSum   { 
             return   true 
         } 
         return   dfs ( root . Left ,   s )   ||   dfs ( root . Right ,   s ) 
     } 
     return   dfs ( root ,   0 ) 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 /** 
 * Definition for a binary tree node. 
 * class TreeNode { 
 *     val: number 
 *     left: TreeNode | null 
 *     right: TreeNode | null 
 *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) { 
 *         this.val = (val===undefined ? 0 : val) 
 *         this.left = (left===undefined ? null : left) 
 *         this.right = (right===undefined ? null : right) 
 *     } 
 * } 
 */ 
function   hasPathSum ( root :   TreeNode   |   null ,   targetSum :   number ) :   boolean   { 
     if   ( root   ===   null )   { 
         return   false ; 
     } 
     const   {   val ,   left ,   right   }   =   root ; 
     if   ( left   ===   null   &&   right   ===   null )   { 
         return   targetSum   -   val   ===   0 ; 
     } 
     return   hasPathSum ( left ,   targetSum   -   val )   ||   hasPathSum ( right ,   targetSum   -   val ); 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 // Definition for a binary tree node. 
// #[derive(Debug, PartialEq, Eq)] 
// pub struct TreeNode { 
//   pub val: i32, 
//   pub left: Option<Rc<RefCell<TreeNode>>>, 
//   pub right: Option<Rc<RefCell<TreeNode>>>, 
// } 
// 
// impl TreeNode { 
//   #[inline] 
//   pub fn new(val: i32) -> Self { 
//     TreeNode { 
//       val, 
//       left: None, 
//       right: None 
//     } 
//   } 
// } 
use   std :: cell :: RefCell ; 
use   std :: rc :: Rc ; 
impl   Solution   { 
     pub   fn   has_path_sum ( root :   Option < Rc < RefCell < TreeNode >>> ,   target_sum :   i32 )   ->   bool   { 
         match   root   { 
             None   =>   false , 
             Some ( node )   =>   { 
                 let   mut   node   =   node . borrow_mut (); 
                 // 确定叶结点身份 
                 if   node . left . is_none ()   &&   node . right . is_none ()   { 
                     return   target_sum   -   node . val   ==   0 ; 
                 } 
                 let   val   =   node . val ; 
                 Self :: has_path_sum ( node . left . take (),   target_sum   -   val ) 
                     ||   Self :: has_path_sum ( node . right . take (),   target_sum   -   val ) 
             } 
         } 
     } 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 /** 
 * Definition for a binary tree node. 
 * function TreeNode(val, left, right) { 
 *     this.val = (val===undefined ? 0 : val) 
 *     this.left = (left===undefined ? null : left) 
 *     this.right = (right===undefined ? null : right) 
 * } 
 */ 
/** 
 * @param {TreeNode} root 
 * @param {number} targetSum 
 * @return {boolean} 
 */ 
var   hasPathSum   =   function   ( root ,   targetSum )   { 
     function   dfs ( root ,   s )   { 
         if   ( ! root )   return   false ; 
         s   +=   root . val ; 
         if   ( ! root . left   &&   ! root . right   &&   s   ==   targetSum )   return   true ; 
         return   dfs ( root . left ,   s )   ||   dfs ( root . right ,   s ); 
     } 
     return   dfs ( root ,   0 ); 
};