二叉树 
      
    
      
      
      
        广度优先搜索 
      
    
      
      
      
        树 
      
    
      
      
      
        深度优先搜索 
      
    
   
  
    
      
       
  
  
    
      
    
    
      
       
  
题目描述 
给定一个二叉树,找出其最小深度。
最小深度是从根节点到最近叶子节点的最短路径上的节点数量。
说明: 叶子节点是指没有子节点的节点。
 
示例 1: 
输入: root = [3,9,20,null,null,15,7]
输出: 2
 
示例 2: 
输入: root = [2,null,3,null,4,null,5,null,6]
输出: 5
 
 
提示: 
    树中节点数的范围在 [0, 105 ] 内 
    -1000 <= Node.val <= 1000 
解法 
方法一:递归 
递归的终止条件是当前节点为空,此时返回 \(0\) ;如果当前节点左右子树有一个为空,返回不为空的子树的最小深度加 \(1\) ;如果当前节点左右子树都不为空,返回左右子树最小深度的较小值加 \(1\) 。
时间复杂度 \(O(n)\) ,空间复杂度 \(O(n)\) 。其中 \(n\)  是二叉树的节点个数。
Python3 Java C++ Go TypeScript Rust JavaScript C 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 # Definition for a binary tree node. 
# class TreeNode: 
#     def __init__(self, val=0, left=None, right=None): 
#         self.val = val 
#         self.left = left 
#         self.right = right 
class   Solution : 
    def   minDepth ( self ,  root :  Optional [ TreeNode ])  ->  int : 
        if  root  is  None : 
            return  0 
        if  root . left  is  None : 
            return  1  +  self . minDepth ( root . right ) 
        if  root . right  is  None : 
            return  1  +  self . minDepth ( root . left ) 
        return  1  +  min ( self . minDepth ( root . left ),  self . minDepth ( root . right )) 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 /** 
 * Definition for a binary tree node. 
 * public class TreeNode { 
 *     int val; 
 *     TreeNode left; 
 *     TreeNode right; 
 *     TreeNode() {} 
 *     TreeNode(int val) { this.val = val; } 
 *     TreeNode(int val, TreeNode left, TreeNode right) { 
 *         this.val = val; 
 *         this.left = left; 
 *         this.right = right; 
 *     } 
 * } 
 */ 
class  Solution   { 
     public   int   minDepth ( TreeNode   root )   { 
         if   ( root   ==   null )   { 
             return   0 ; 
         } 
         if   ( root . left   ==   null )   { 
             return   1   +   minDepth ( root . right ); 
         } 
         if   ( root . right   ==   null )   { 
             return   1   +   minDepth ( root . left ); 
         } 
         return   1   +   Math . min ( minDepth ( root . left ),   minDepth ( root . right )); 
     } 
} 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 /** 
 * Definition for a binary tree node. 
 * struct TreeNode { 
 *     int val; 
 *     TreeNode *left; 
 *     TreeNode *right; 
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} 
 * }; 
 */ 
class   Solution   { 
public : 
     int   minDepth ( TreeNode *   root )   { 
         if   ( ! root )   { 
             return   0 ; 
         } 
         if   ( ! root -> left )   { 
             return   1   +   minDepth ( root -> right ); 
         } 
         if   ( ! root -> right )   { 
             return   1   +   minDepth ( root -> left ); 
         } 
         return   1   +   min ( minDepth ( root -> left ),   minDepth ( root -> right )); 
     } 
}; 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 /** 
 * Definition for a binary tree node. 
 * type TreeNode struct { 
 *     Val int 
 *     Left *TreeNode 
 *     Right *TreeNode 
 * } 
 */ 
func   minDepth ( root   * TreeNode )   int   { 
     if   root   ==   nil   { 
         return   0 
     } 
     if   root . Left   ==   nil   { 
         return   1   +   minDepth ( root . Right ) 
     } 
     if   root . Right   ==   nil   { 
         return   1   +   minDepth ( root . Left ) 
     } 
     return   1   +   min ( minDepth ( root . Left ),   minDepth ( root . Right )) 
} 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 /** 
 * Definition for a binary tree node. 
 * class TreeNode { 
 *     val: number 
 *     left: TreeNode | null 
 *     right: TreeNode | null 
 *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) { 
 *         this.val = (val===undefined ? 0 : val) 
 *         this.left = (left===undefined ? null : left) 
 *         this.right = (right===undefined ? null : right) 
 *     } 
 * } 
 */ 
function   minDepth ( root :   TreeNode   |   null ) :   number   { 
     if   ( root   ==   null )   { 
         return   0 ; 
     } 
     const   {   left ,   right   }   =   root ; 
     if   ( left   ==   null )   { 
         return   1   +   minDepth ( right ); 
     } 
     if   ( right   ==   null )   { 
         return   1   +   minDepth ( left ); 
     } 
     return   1   +   Math . min ( minDepth ( left ),   minDepth ( right )); 
} 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 // Definition for a binary tree node. 
// #[derive(Debug, PartialEq, Eq)] 
// pub struct TreeNode { 
//   pub val: i32, 
//   pub left: Option<Rc<RefCell<TreeNode>>>, 
//   pub right: Option<Rc<RefCell<TreeNode>>>, 
// } 
// 
// impl TreeNode { 
//   #[inline] 
//   pub fn new(val: i32) -> Self { 
//     TreeNode { 
//       val, 
//       left: None, 
//       right: None 
//     } 
//   } 
// } 
use   std :: cell :: RefCell ; 
use   std :: rc :: Rc ; 
impl   Solution   { 
     fn   dfs ( root :   & Option < Rc < RefCell < TreeNode >>> )   ->   i32   { 
         if   root . is_none ()   { 
             return   0 ; 
         } 
         let   node   =   root . as_ref (). unwrap (). borrow (); 
         if   node . left . is_none ()   { 
             return   1   +   Self :: dfs ( & node . right ); 
         } 
         if   node . right . is_none ()   { 
             return   1   +   Self :: dfs ( & node . left ); 
         } 
         1   +   Self :: dfs ( & node . left ). min ( Self :: dfs ( & node . right )) 
     } 
     pub   fn   min_depth ( root :   Option < Rc < RefCell < TreeNode >>> )   ->   i32   { 
         Self :: dfs ( & root ) 
     } 
} 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 /** 
 * Definition for a binary tree node. 
 * function TreeNode(val, left, right) { 
 *     this.val = (val===undefined ? 0 : val) 
 *     this.left = (left===undefined ? null : left) 
 *     this.right = (right===undefined ? null : right) 
 * } 
 */ 
/** 
 * @param {TreeNode} root 
 * @return {number} 
 */ 
var   minDepth   =   function   ( root )   { 
     if   ( ! root )   { 
         return   0 ; 
     } 
     if   ( ! root . left )   { 
         return   1   +   minDepth ( root . right ); 
     } 
     if   ( ! root . right )   { 
         return   1   +   minDepth ( root . left ); 
     } 
     return   1   +   Math . min ( minDepth ( root . left ),   minDepth ( root . right )); 
}; 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 /** 
 * Definition for a binary tree node. 
 * struct TreeNode { 
 *     int val; 
 *     struct TreeNode *left; 
 *     struct TreeNode *right; 
 * }; 
 */ 
#define min(a, b) (((a) < (b)) ? (a) : (b)) 
int   minDepth ( struct   TreeNode *   root )   { 
     if   ( ! root )   { 
         return   0 ; 
     } 
     if   ( ! root -> left )   { 
         return   1   +   minDepth ( root -> right ); 
     } 
     if   ( ! root -> right )   { 
         return   1   +   minDepth ( root -> left ); 
     } 
     int   left   =   minDepth ( root -> left ); 
     int   right   =   minDepth ( root -> right ); 
     return   1   +   min ( left ,   right ); 
} 
 
 
方法二:BFS 
使用队列实现广度优先搜索,初始时将根节点加入队列。每次从队列中取出一个节点,如果该节点是叶子节点,则直接返回当前深度;如果该节点不是叶子节点,则将该节点的所有非空子节点加入队列。继续搜索下一层节点,直到找到叶子节点。
时间复杂度 \(O(n)\) ,空间复杂度 \(O(n)\) 。其中 \(n\)  是二叉树的节点个数。
Python3 Java C++ Go TypeScript JavaScript 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 # Definition for a binary tree node. 
# class TreeNode: 
#     def __init__(self, val=0, left=None, right=None): 
#         self.val = val 
#         self.left = left 
#         self.right = right 
class   Solution : 
    def   minDepth ( self ,  root :  Optional [ TreeNode ])  ->  int : 
        if  root  is  None : 
            return  0 
        q  =  deque ([ root ]) 
        ans  =  0 
        while  1 : 
            ans  +=  1 
            for  _  in  range ( len ( q )): 
                node  =  q . popleft () 
                if  node . left  is  None  and  node . right  is  None : 
                    return  ans 
                if  node . left : 
                    q . append ( node . left ) 
                if  node . right : 
                    q . append ( node . right ) 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 /** 
 * Definition for a binary tree node. 
 * public class TreeNode { 
 *     int val; 
 *     TreeNode left; 
 *     TreeNode right; 
 *     TreeNode() {} 
 *     TreeNode(int val) { this.val = val; } 
 *     TreeNode(int val, TreeNode left, TreeNode right) { 
 *         this.val = val; 
 *         this.left = left; 
 *         this.right = right; 
 *     } 
 * } 
 */ 
class  Solution   { 
     public   int   minDepth ( TreeNode   root )   { 
         if   ( root   ==   null )   { 
             return   0 ; 
         } 
         Deque < TreeNode >   q   =   new   ArrayDeque <> (); 
         q . offer ( root ); 
         int   ans   =   0 ; 
         while   ( true )   { 
             ++ ans ; 
             for   ( int   n   =   q . size ();   n   >   0 ;   n -- )   { 
                 TreeNode   node   =   q . poll (); 
                 if   ( node . left   ==   null   &&   node . right   ==   null )   { 
                     return   ans ; 
                 } 
                 if   ( node . left   !=   null )   { 
                     q . offer ( node . left ); 
                 } 
                 if   ( node . right   !=   null )   { 
                     q . offer ( node . right ); 
                 } 
             } 
         } 
     } 
} 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 /** 
 * Definition for a binary tree node. 
 * struct TreeNode { 
 *     int val; 
 *     TreeNode *left; 
 *     TreeNode *right; 
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} 
 * }; 
 */ 
class   Solution   { 
public : 
     int   minDepth ( TreeNode *   root )   { 
         if   ( ! root )   { 
             return   0 ; 
         } 
         queue < TreeNode *>   q {{ root }}; 
         int   ans   =   0 ; 
         while   ( 1 )   { 
             ++ ans ; 
             for   ( int   n   =   q . size ();   n ;   -- n )   { 
                 auto   node   =   q . front (); 
                 q . pop (); 
                 if   ( ! node -> left   &&   ! node -> right )   { 
                     return   ans ; 
                 } 
                 if   ( node -> left )   { 
                     q . push ( node -> left ); 
                 } 
                 if   ( node -> right )   { 
                     q . push ( node -> right ); 
                 } 
             } 
         } 
     } 
}; 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 /** 
 * Definition for a binary tree node. 
 * type TreeNode struct { 
 *     Val int 
 *     Left *TreeNode 
 *     Right *TreeNode 
 * } 
 */ 
func   minDepth ( root   * TreeNode )   ( ans   int )   { 
     if   root   ==   nil   { 
         return   0 
     } 
     q   :=   [] * TreeNode { root } 
     for   { 
         ans ++ 
         for   n   :=   len ( q );   n   >   0 ;   n --   { 
             node   :=   q [ 0 ] 
             q   =   q [ 1 :] 
             if   node . Left   ==   nil   &&   node . Right   ==   nil   { 
                 return 
             } 
             if   node . Left   !=   nil   { 
                 q   =   append ( q ,   node . Left ) 
             } 
             if   node . Right   !=   nil   { 
                 q   =   append ( q ,   node . Right ) 
             } 
         } 
     } 
} 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 /** 
 * Definition for a binary tree node. 
 * class TreeNode { 
 *     val: number 
 *     left: TreeNode | null 
 *     right: TreeNode | null 
 *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) { 
 *         this.val = (val===undefined ? 0 : val) 
 *         this.left = (left===undefined ? null : left) 
 *         this.right = (right===undefined ? null : right) 
 *     } 
 * } 
 */ 
function   minDepth ( root :   TreeNode   |   null ) :   number   { 
     if   ( ! root )   { 
         return   0 ; 
     } 
     const   q   =   [ root ]; 
     let   ans   =   0 ; 
     while   ( 1 )   { 
         ++ ans ; 
         for   ( let   n   =   q . length ;   n ;   -- n )   { 
             const   node   =   q . shift (); 
             if   ( ! node . left   &&   ! node . right )   { 
                 return   ans ; 
             } 
             if   ( node . left )   { 
                 q . push ( node . left ); 
             } 
             if   ( node . right )   { 
                 q . push ( node . right ); 
             } 
         } 
     } 
} 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 /** 
 * Definition for a binary tree node. 
 * function TreeNode(val, left, right) { 
 *     this.val = (val===undefined ? 0 : val) 
 *     this.left = (left===undefined ? null : left) 
 *     this.right = (right===undefined ? null : right) 
 * } 
 */ 
/** 
 * @param {TreeNode} root 
 * @return {number} 
 */ 
var   minDepth   =   function   ( root )   { 
     if   ( ! root )   { 
         return   0 ; 
     } 
     const   q   =   [ root ]; 
     let   ans   =   0 ; 
     while   ( 1 )   { 
         ++ ans ; 
         for   ( let   n   =   q . length ;   n ;   -- n )   { 
             const   node   =   q . shift (); 
             if   ( ! node . left   &&   ! node . right )   { 
                 return   ans ; 
             } 
             if   ( node . left )   { 
                 q . push ( node . left ); 
             } 
             if   ( node . right )   { 
                 q . push ( node . right ); 
             } 
         } 
     } 
};