二叉树 
      
    
      
      
      
        树 
      
    
      
      
      
        深度优先搜索 
      
    
   
  
    
      
       
     
  
  
    
      
    
    
      
       
     
  
题目描述 
给定一个二叉树,判断它是否是 平衡二叉树   
 
示例 1: 
输入: root = [3,9,20,null,null,15,7]
输出: true
 
示例 2: 
输入: root = [1,2,2,3,3,null,null,4,4]
输出: false
 
示例 3: 
输入: root = []
输出: true
 
 
提示: 
    树中的节点数在范围 [0, 5000] 内 
    -104  <= Node.val <= 104  
 
解法 
方法一:自底向上的递归 
定义函数 \(height(root)\)  计算二叉树的高度,处理逻辑如下:
如果二叉树 \(root\)  为空,返回 \(0\) 。 
否则,递归计算左右子树的高度,分别为 \(l\)  和 \(r\) 。如果 \(l\)  或 \(r\)  为 \(-1\) ,或者 \(l\)  和 \(r\)  的差的绝对值大于 \(1\) ,则返回 \(-1\) ,否则返回 \(max(l, r) + 1\) 。 
 
那么,如果函数 \(height(root)\)  返回的是 \(-1\) ,则说明二叉树 \(root\)  不是平衡二叉树,否则是平衡二叉树。
时间复杂度 \(O(n)\) ,空间复杂度 \(O(n)\) 。其中 \(n\)  是二叉树的节点数。
Python3 Java C++ Go TypeScript Rust JavaScript 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 # Definition for a binary tree node. 
# class TreeNode: 
#     def __init__(self, val=0, left=None, right=None): 
#         self.val = val 
#         self.left = left 
#         self.right = right 
class   Solution : 
    def   isBalanced ( self ,  root :  Optional [ TreeNode ])  ->  bool : 
        def   height ( root ): 
            if  root  is  None : 
                return  0 
            l ,  r  =  height ( root . left ),  height ( root . right ) 
            if  l  ==  - 1  or  r  ==  - 1  or  abs ( l  -  r )  >  1 : 
                return  - 1 
            return  1  +  max ( l ,  r ) 
        return  height ( root )  >=  0 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 /** 
 * Definition for a binary tree node. 
 * public class TreeNode { 
 *     int val; 
 *     TreeNode left; 
 *     TreeNode right; 
 *     TreeNode() {} 
 *     TreeNode(int val) { this.val = val; } 
 *     TreeNode(int val, TreeNode left, TreeNode right) { 
 *         this.val = val; 
 *         this.left = left; 
 *         this.right = right; 
 *     } 
 * } 
 */ 
class  Solution   { 
     public   boolean   isBalanced ( TreeNode   root )   { 
         return   height ( root )   >=   0 ; 
     } 
     private   int   height ( TreeNode   root )   { 
         if   ( root   ==   null )   { 
             return   0 ; 
         } 
         int   l   =   height ( root . left ); 
         int   r   =   height ( root . right ); 
         if   ( l   ==   - 1   ||   r   ==   - 1   ||   Math . abs ( l   -   r )   >   1 )   { 
             return   - 1 ; 
         } 
         return   1   +   Math . max ( l ,   r ); 
     } 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 /** 
 * Definition for a binary tree node. 
 * struct TreeNode { 
 *     int val; 
 *     TreeNode *left; 
 *     TreeNode *right; 
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} 
 * }; 
 */ 
class   Solution   { 
public : 
     bool   isBalanced ( TreeNode *   root )   { 
         function < int ( TreeNode * ) >   height   =   [ & ]( TreeNode *   root )   { 
             if   ( ! root )   { 
                 return   0 ; 
             } 
             int   l   =   height ( root -> left ); 
             int   r   =   height ( root -> right ); 
             if   ( l   ==   -1   ||   r   ==   -1   ||   abs ( l   -   r )   >   1 )   { 
                 return   -1 ; 
             } 
             return   1   +   max ( l ,   r ); 
         }; 
         return   height ( root )   >=   0 ; 
     } 
}; 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 /** 
 * Definition for a binary tree node. 
 * type TreeNode struct { 
 *     Val int 
 *     Left *TreeNode 
 *     Right *TreeNode 
 * } 
 */ 
func   isBalanced ( root   * TreeNode )   bool   { 
     var   height   func ( * TreeNode )   int 
     height   =   func ( root   * TreeNode )   int   { 
         if   root   ==   nil   { 
             return   0 
         } 
         l ,   r   :=   height ( root . Left ),   height ( root . Right ) 
         if   l   ==   - 1   ||   r   ==   - 1   ||   abs ( l - r )   >   1   { 
             return   - 1 
         } 
         if   l   >   r   { 
             return   1   +   l 
         } 
         return   1   +   r 
     } 
     return   height ( root )   >=   0 
} 
func   abs ( x   int )   int   { 
     if   x   <   0   { 
         return   - x 
     } 
     return   x 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 /** 
 * Definition for a binary tree node. 
 * class TreeNode { 
 *     val: number 
 *     left: TreeNode | null 
 *     right: TreeNode | null 
 *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) { 
 *         this.val = (val===undefined ? 0 : val) 
 *         this.left = (left===undefined ? null : left) 
 *         this.right = (right===undefined ? null : right) 
 *     } 
 * } 
 */ 
function   isBalanced ( root :   TreeNode   |   null ) :   boolean   { 
     const   dfs   =   ( root :   TreeNode   |   null )   =>   { 
         if   ( root   ==   null )   { 
             return   0 ; 
         } 
         const   left   =   dfs ( root . left ); 
         const   right   =   dfs ( root . right ); 
         if   ( left   ===   - 1   ||   right   ===   - 1   ||   Math . abs ( left   -   right )   >   1 )   { 
             return   - 1 ; 
         } 
         return   1   +   Math . max ( left ,   right ); 
     }; 
     return   dfs ( root )   >   - 1 ; 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 // Definition for a binary tree node. 
// #[derive(Debug, PartialEq, Eq)] 
// pub struct TreeNode { 
//   pub val: i32, 
//   pub left: Option<Rc<RefCell<TreeNode>>>, 
//   pub right: Option<Rc<RefCell<TreeNode>>>, 
// } 
// 
// impl TreeNode { 
//   #[inline] 
//   pub fn new(val: i32) -> Self { 
//     TreeNode { 
//       val, 
//       left: None, 
//       right: None 
//     } 
//   } 
// } 
use   std :: cell :: RefCell ; 
use   std :: rc :: Rc ; 
impl   Solution   { 
     pub   fn   is_balanced ( root :   Option < Rc < RefCell < TreeNode >>> )   ->   bool   { 
         Self :: dfs ( & root )   >   - 1 
     } 
     fn   dfs ( root :   & Option < Rc < RefCell < TreeNode >>> )   ->   i32   { 
         if   root . is_none ()   { 
             return   0 ; 
         } 
         let   node   =   root . as_ref (). unwrap (). borrow (); 
         let   left   =   Self :: dfs ( & node . left ); 
         let   right   =   Self :: dfs ( & node . right ); 
         if   left   ==   - 1   ||   right   ==   - 1   ||   ( left   -   right ). abs ()   >   1   { 
             return   - 1 ; 
         } 
         1   +   left . max ( right ) 
     } 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 /** 
 * Definition for a binary tree node. 
 * function TreeNode(val, left, right) { 
 *     this.val = (val===undefined ? 0 : val) 
 *     this.left = (left===undefined ? null : left) 
 *     this.right = (right===undefined ? null : right) 
 * } 
 */ 
/** 
 * @param {TreeNode} root 
 * @return {boolean} 
 */ 
var   isBalanced   =   function   ( root )   { 
     const   height   =   root   =>   { 
         if   ( ! root )   { 
             return   0 ; 
         } 
         const   l   =   height ( root . left ); 
         const   r   =   height ( root . right ); 
         if   ( l   ==   - 1   ||   r   ==   - 1   ||   Math . abs ( l   -   r )   >   1 )   { 
             return   - 1 ; 
         } 
         return   1   +   Math . max ( l ,   r ); 
     }; 
     return   height ( root )   >=   0 ; 
};