二叉搜索树
二叉树
分治
树
链表
题目描述
给定一个单链表的头节点 head
,其中的元素 按升序排序 ,将其转换为 平衡 二叉搜索树。
示例 1:
输入: head = [-10,-3,0,5,9]
输出: [0,-3,9,-10,null,5]
解释: 一个可能的答案是[0,-3,9,-10,null,5],它表示所示的高度平衡的二叉搜索树。
示例 2:
输入: head = []
输出: []
提示:
head
中的节点数在[0, 2 * 104 ]
范围内
-105 <= Node.val <= 105
解法
方法一:DFS
我们先将链表转换为数组 \(\textit{nums}\) ,然后使用深度优先搜索构造二叉搜索树。
我们定义一个函数 \(\textit{dfs}(i, j)\) ,其中 \(i\) 和 \(j\) 表示当前区间为 \([i, j]\) 。每次我们选择区间中间位置 \(\textit{mid}\) 的数字作为根节点,递归地构造左侧区间 \([i, \textit{mid} - 1]\) 的子树,以及右侧区间 \([\textit{mid} + 1, j]\) 的子树。最后返回 \(\textit{mid}\) 对应的节点作为当前子树的根节点。
在主函数中,我们只需要调用 \(\textit{dfs}(0, n - 1)\) 并返回即可。
时间复杂度 \(O(n)\) ,空间复杂度 \(O(n)\) 。其中 \(n\) 是链表的长度。
Python3 Java C++ Go TypeScript Rust JavaScript C
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 # Definition for singly-linked list.
# class ListNode:
# def __init__(self, val=0, next=None):
# self.val = val
# self.next = next
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution :
def sortedListToBST ( self , head : Optional [ ListNode ]) -> Optional [ TreeNode ]:
def dfs ( i : int , j : int ) -> Optional [ TreeNode ]:
if i > j :
return None
mid = ( i + j ) >> 1
l , r = dfs ( i , mid - 1 ), dfs ( mid + 1 , j )
return TreeNode ( nums [ mid ], l , r )
nums = []
while head :
nums . append ( head . val )
head = head . next
return dfs ( 0 , len ( nums ) - 1 )
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45 /**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode() {}
* ListNode(int val) { this.val = val; }
* ListNode(int val, ListNode next) { this.val = val; this.next = next; }
* }
*/
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private List < Integer > nums = new ArrayList <> ();
public TreeNode sortedListToBST ( ListNode head ) {
for (; head != null ; head = head . next ) {
nums . add ( head . val );
}
return dfs ( 0 , nums . size () - 1 );
}
private TreeNode dfs ( int i , int j ) {
if ( i > j ) {
return null ;
}
int mid = ( i + j ) >> 1 ;
TreeNode left = dfs ( i , mid - 1 );
TreeNode right = dfs ( mid + 1 , j );
return new TreeNode ( nums . get ( mid ), left , right );
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40 /**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode() : val(0), next(nullptr) {}
* ListNode(int x) : val(x), next(nullptr) {}
* ListNode(int x, ListNode *next) : val(x), next(next) {}
* };
*/
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public :
TreeNode * sortedListToBST ( ListNode * head ) {
vector < int > nums ;
for (; head ; head = head -> next ) {
nums . push_back ( head -> val );
}
auto dfs = [ & ]( this auto && dfs , int i , int j ) -> TreeNode * {
if ( i > j ) {
return nullptr ;
}
int mid = ( i + j ) >> 1 ;
TreeNode * left = dfs ( i , mid - 1 );
TreeNode * right = dfs ( mid + 1 , j );
return new TreeNode ( nums [ mid ], left , right );
};
return dfs ( 0 , nums . size () - 1 );
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 /**
* Definition for singly-linked list.
* type ListNode struct {
* Val int
* Next *ListNode
* }
*/
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func sortedListToBST ( head * ListNode ) * TreeNode {
nums := [] int {}
for ; head != nil ; head = head . Next {
nums = append ( nums , head . Val )
}
var dfs func ( i , j int ) * TreeNode
dfs = func ( i , j int ) * TreeNode {
if i > j {
return nil
}
mid := ( i + j ) >> 1
left := dfs ( i , mid - 1 )
right := dfs ( mid + 1 , j )
return & TreeNode { nums [ mid ], left , right }
}
return dfs ( 0 , len ( nums ) - 1 )
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42 /**
* Definition for singly-linked list.
* class ListNode {
* val: number
* next: ListNode | null
* constructor(val?: number, next?: ListNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.next = (next===undefined ? null : next)
* }
* }
*/
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function sortedListToBST ( head : ListNode | null ) : TreeNode | null {
const nums : number [] = [];
for (; head ; head = head . next ) {
nums . push ( head . val );
}
const dfs = ( i : number , j : number ) : TreeNode | null => {
if ( i > j ) {
return null ;
}
const mid = ( i + j ) >> 1 ;
const left = dfs ( i , mid - 1 );
const right = dfs ( mid + 1 , j );
return new TreeNode ( nums [ mid ], left , right );
};
return dfs ( 0 , nums . length - 1 );
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61 // Definition for singly-linked list.
// #[derive(PartialEq, Eq, Clone, Debug)]
// pub struct ListNode {
// pub val: i32,
// pub next: Option<Box<ListNode>>
// }
//
// impl ListNode {
// #[inline]
// fn new(val: i32) -> Self {
// ListNode {
// next: None,
// val
// }
// }
// }
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std :: cell :: RefCell ;
use std :: rc :: Rc ;
impl Solution {
pub fn sorted_list_to_bst ( head : Option < Box < ListNode >> ) -> Option < Rc < RefCell < TreeNode >>> {
let mut nums = Vec :: new ();
let mut current = head ;
while let Some ( node ) = current {
nums . push ( node . val );
current = node . next ;
}
fn dfs ( nums : & [ i32 ]) -> Option < Rc < RefCell < TreeNode >>> {
if nums . is_empty () {
return None ;
}
let mid = nums . len () / 2 ;
Some ( Rc :: new ( RefCell :: new ( TreeNode {
val : nums [ mid ],
left : dfs ( & nums [ .. mid ]),
right : dfs ( & nums [ mid + 1 .. ]),
})))
}
dfs ( & nums )
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35 /**
* Definition for singly-linked list.
* function ListNode(val, next) {
* this.val = (val===undefined ? 0 : val)
* this.next = (next===undefined ? null : next)
* }
*/
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {ListNode} head
* @return {TreeNode}
*/
var sortedListToBST = function ( head ) {
const nums = [];
for (; head ; head = head . next ) {
nums . push ( head . val );
}
const dfs = ( i , j ) => {
if ( i > j ) {
return null ;
}
const mid = ( i + j ) >> 1 ;
const left = dfs ( i , mid - 1 );
const right = dfs ( mid + 1 , j );
return new TreeNode ( nums [ mid ], left , right );
};
return dfs ( 0 , nums . length - 1 );
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48 /**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* struct ListNode *next;
* };
*/
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* struct TreeNode *left;
* struct TreeNode *right;
* };
*/
struct TreeNode * dfs ( int * nums , int i , int j ) {
if ( i > j ) {
return NULL ;
}
int mid = ( i + j ) >> 1 ;
struct TreeNode * left = dfs ( nums , i , mid - 1 );
struct TreeNode * right = dfs ( nums , mid + 1 , j );
struct TreeNode * root = ( struct TreeNode * ) malloc ( sizeof ( struct TreeNode ));
root -> val = nums [ mid ];
root -> left = left ;
root -> right = right ;
return root ;
}
struct TreeNode * sortedListToBST ( struct ListNode * head ) {
int size = 0 ;
struct ListNode * temp = head ;
while ( temp ) {
size ++ ;
temp = temp -> next ;
}
int * nums = ( int * ) malloc ( size * sizeof ( int ));
temp = head ;
for ( int i = 0 ; i < size ; i ++ ) {
nums [ i ] = temp -> val ;
temp = temp -> next ;
}
struct TreeNode * root = dfs ( nums , 0 , size - 1 );
free ( nums );
return root ;
}