二叉树 
      
    
      
      
      
        广度优先搜索 
      
    
      
      
      
        树 
      
    
      
      
      
        深度优先搜索 
      
    
   
  
    
      
       
     
  
  
    
      
    
    
      
       
     
  
题目描述 
给定一个二叉树 root ,返回其最大深度。
二叉树的 最大深度  是指从根节点到最远叶子节点的最长路径上的节点数。
 
示例 1: 
 
输入: root = [3,9,20,null,null,15,7]
输出: 3
 
示例 2: 
输入: root = [1,null,2]
输出: 2
 
 
提示: 
    树中节点的数量在 [0, 104 ] 区间内。 
    -100 <= Node.val <= 100 
 
解法 
方法一:递归 
递归遍历左右子树,求左右子树的最大深度,然后取最大值加 \(1\)  即可。
时间复杂度 \(O(n)\) ,其中 \(n\)  是二叉树的节点数。每个节点在递归中只被遍历一次。
Python3 Java C++ Go TypeScript Rust JavaScript C 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 # Definition for a binary tree node. 
# class TreeNode: 
#     def __init__(self, val=0, left=None, right=None): 
#         self.val = val 
#         self.left = left 
#         self.right = right 
class   Solution : 
    def   maxDepth ( self ,  root :  TreeNode )  ->  int : 
        if  root  is  None : 
            return  0 
        l ,  r  =  self . maxDepth ( root . left ),  self . maxDepth ( root . right ) 
        return  1  +  max ( l ,  r ) 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 /** 
 * Definition for a binary tree node. 
 * public class TreeNode { 
 *     int val; 
 *     TreeNode left; 
 *     TreeNode right; 
 *     TreeNode() {} 
 *     TreeNode(int val) { this.val = val; } 
 *     TreeNode(int val, TreeNode left, TreeNode right) { 
 *         this.val = val; 
 *         this.left = left; 
 *         this.right = right; 
 *     } 
 * } 
 */ 
class  Solution   { 
     public   int   maxDepth ( TreeNode   root )   { 
         if   ( root   ==   null )   { 
             return   0 ; 
         } 
         int   l   =   maxDepth ( root . left ); 
         int   r   =   maxDepth ( root . right ); 
         return   1   +   Math . max ( l ,   r ); 
     } 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 /** 
 * Definition for a binary tree node. 
 * struct TreeNode { 
 *     int val; 
 *     TreeNode *left; 
 *     TreeNode *right; 
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} 
 * }; 
 */ 
class   Solution   { 
public : 
     int   maxDepth ( TreeNode *   root )   { 
         if   ( ! root )   return   0 ; 
         int   l   =   maxDepth ( root -> left ),   r   =   maxDepth ( root -> right ); 
         return   1   +   max ( l ,   r ); 
     } 
}; 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 /** 
 * Definition for a binary tree node. 
 * type TreeNode struct { 
 *     Val int 
 *     Left *TreeNode 
 *     Right *TreeNode 
 * } 
 */ 
func   maxDepth ( root   * TreeNode )   int   { 
     if   root   ==   nil   { 
         return   0 
     } 
     l ,   r   :=   maxDepth ( root . Left ),   maxDepth ( root . Right ) 
     return   1   +   max ( l ,   r ) 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 /** 
 * Definition for a binary tree node. 
 * class TreeNode { 
 *     val: number 
 *     left: TreeNode | null 
 *     right: TreeNode | null 
 *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) { 
 *         this.val = (val===undefined ? 0 : val) 
 *         this.left = (left===undefined ? null : left) 
 *         this.right = (right===undefined ? null : right) 
 *     } 
 * } 
 */ 
function   maxDepth ( root :   TreeNode   |   null ) :   number   { 
     if   ( root   ===   null )   { 
         return   0 ; 
     } 
     return   1   +   Math . max ( maxDepth ( root . left ),   maxDepth ( root . right )); 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 // Definition for a binary tree node. 
// #[derive(Debug, PartialEq, Eq)] 
// pub struct TreeNode { 
//   pub val: i32, 
//   pub left: Option<Rc<RefCell<TreeNode>>>, 
//   pub right: Option<Rc<RefCell<TreeNode>>>, 
// } 
// 
// impl TreeNode { 
//   #[inline] 
//   pub fn new(val: i32) -> Self { 
//     TreeNode { 
//       val, 
//       left: None, 
//       right: None 
//     } 
//   } 
// } 
use   std :: cell :: RefCell ; 
use   std :: rc :: Rc ; 
impl   Solution   { 
     fn   dfs ( root :   & Option < Rc < RefCell < TreeNode >>> )   ->   i32   { 
         if   root . is_none ()   { 
             return   0 ; 
         } 
         let   node   =   root . as_ref (). unwrap (). borrow (); 
         1   +   Self :: dfs ( & node . left ). max ( Self :: dfs ( & node . right )) 
     } 
     pub   fn   max_depth ( root :   Option < Rc < RefCell < TreeNode >>> )   ->   i32   { 
         Self :: dfs ( & root ) 
     } 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 /** 
 * Definition for a binary tree node. 
 * function TreeNode(val, left, right) { 
 *     this.val = (val===undefined ? 0 : val) 
 *     this.left = (left===undefined ? null : left) 
 *     this.right = (right===undefined ? null : right) 
 * } 
 */ 
/** 
 * @param {TreeNode} root 
 * @return {number} 
 */ 
var   maxDepth   =   function   ( root )   { 
     if   ( ! root )   return   0 ; 
     const   l   =   maxDepth ( root . left ); 
     const   r   =   maxDepth ( root . right ); 
     return   1   +   Math . max ( l ,   r ); 
}; 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 /** 
 * Definition for a binary tree node. 
 * struct TreeNode { 
 *     int val; 
 *     struct TreeNode *left; 
 *     struct TreeNode *right; 
 * }; 
 */ 
#define max(a, b) (((a) > (b)) ? (a) : (b)) 
int   maxDepth ( struct   TreeNode *   root )   { 
     if   ( ! root )   { 
         return   0 ; 
     } 
     int   left   =   maxDepth ( root -> left ); 
     int   right   =   maxDepth ( root -> right ); 
     return   1   +   max ( left ,   right ); 
}