
题目描述
给你一个大小为 m x n 的整数矩阵 grid ,表示一个网格。另给你三个整数 row、col 和 color 。网格中的每个值表示该位置处的网格块的颜色。
如果两个方块在任意 4 个方向上相邻,则称它们 相邻 。
如果两个方块具有相同的颜色且相邻,它们则属于同一个 连通分量 。
连通分量的边界 是指连通分量中满足下述条件之一的所有网格块:
    - 在上、下、左、右任意一个方向上与不属于同一连通分量的网格块相邻
 
    - 在网格的边界上(第一行/列或最后一行/列)
 
请你使用指定颜色 color 为所有包含网格块 grid[row][col] 的 连通分量的边界 进行着色。
并返回最终的网格 grid 。
 
示例 1:
输入:grid = [[1,1],[1,2]], row = 0, col = 0, color = 3
输出:[[3,3],[3,2]]
示例 2:
输入:grid = [[1,2,2],[2,3,2]], row = 0, col = 1, color = 3
输出:[[1,3,3],[2,3,3]]
示例 3:
输入:grid = [[1,1,1],[1,1,1],[1,1,1]], row = 1, col = 1, color = 2
输出:[[2,2,2],[2,1,2],[2,2,2]]
 
提示:
    m == grid.length 
    n == grid[i].length 
    1 <= m, n <= 50 
    1 <= grid[i][j], color <= 1000 
    0 <= row < m 
    0 <= col < n 
解法
方法一:DFS
我们从位置 \((row, col)\) 出发,利用 DFS 搜索所有颜色为 \(grid[row][col]\) 的网格块,如果该网格块的某个相邻位置的颜色不为 \(grid[row][col]\),或者该网格块在网格的边界上,则将该网格块的颜色改为 \(color\)。
时间复杂度 \(O(m \times n)\),空间复杂度 \(O(m \times n)\)。其中 \(m\) 和 \(n\) 分别是网格的行数和列数。
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21  | class Solution:
    def colorBorder(
        self, grid: List[List[int]], row: int, col: int, color: int
    ) -> List[List[int]]:
        def dfs(i: int, j: int, c: int) -> None:
            vis[i][j] = True
            for a, b in pairwise((-1, 0, 1, 0, -1)):
                x, y = i + a, j + b
                if 0 <= x < m and 0 <= y < n:
                    if not vis[x][y]:
                        if grid[x][y] == c:
                            dfs(x, y, c)
                        else:
                            grid[i][j] = color
                else:
                    grid[i][j] = color
        m, n = len(grid), len(grid[0])
        vis = [[False] * n for _ in range(m)]
        dfs(row, col, grid[row][col])
        return grid
  | 
 
 
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36  | class Solution {
    private int[][] grid;
    private int color;
    private int m;
    private int n;
    private boolean[][] vis;
    public int[][] colorBorder(int[][] grid, int row, int col, int color) {
        this.grid = grid;
        this.color = color;
        m = grid.length;
        n = grid[0].length;
        vis = new boolean[m][n];
        dfs(row, col, grid[row][col]);
        return grid;
    }
    private void dfs(int i, int j, int c) {
        vis[i][j] = true;
        int[] dirs = {-1, 0, 1, 0, -1};
        for (int k = 0; k < 4; ++k) {
            int x = i + dirs[k], y = j + dirs[k + 1];
            if (x >= 0 && x < m && y >= 0 && y < n) {
                if (!vis[x][y]) {
                    if (grid[x][y] == c) {
                        dfs(x, y, c);
                    } else {
                        grid[i][j] = color;
                    }
                }
            } else {
                grid[i][j] = color;
            }
        }
    }
}
  | 
 
 
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30  | class Solution {
public:
    vector<vector<int>> colorBorder(vector<vector<int>>& grid, int row, int col, int color) {
        int m = grid.size();
        int n = grid[0].size();
        bool vis[m][n];
        memset(vis, false, sizeof(vis));
        int dirs[5] = {-1, 0, 1, 0, -1};
        function<void(int, int, int)> dfs = [&](int i, int j, int c) {
            vis[i][j] = true;
            for (int k = 0; k < 4; ++k) {
                int x = i + dirs[k];
                int y = j + dirs[k + 1];
                if (x >= 0 && x < m && y >= 0 && y < n) {
                    if (!vis[x][y]) {
                        if (grid[x][y] == c) {
                            dfs(x, y, c);
                        } else {
                            grid[i][j] = color;
                        }
                    }
                } else {
                    grid[i][j] = color;
                }
            }
        };
        dfs(row, col, grid[row][col]);
        return grid;
    }
};
  | 
 
 
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28  | func colorBorder(grid [][]int, row int, col int, color int) [][]int {
    m, n := len(grid), len(grid[0])
    vis := make([][]bool, m)
    for i := range vis {
        vis[i] = make([]bool, n)
    }
    dirs := [5]int{-1, 0, 1, 0, -1}
    var dfs func(int, int, int)
    dfs = func(i, j, c int) {
        vis[i][j] = true
        for k := 0; k < 4; k++ {
            x, y := i+dirs[k], j+dirs[k+1]
            if x >= 0 && x < m && y >= 0 && y < n {
                if !vis[x][y] {
                    if grid[x][y] == c {
                        dfs(x, y, c)
                    } else {
                        grid[i][j] = color
                    }
                }
            } else {
                grid[i][j] = color
            }
        }
    }
    dfs(row, col, grid[row][col])
    return grid
}
  | 
 
 
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26  | function colorBorder(grid: number[][], row: number, col: number, color: number): number[][] {
    const m = grid.length;
    const n = grid[0].length;
    const vis = new Array(m).fill(0).map(() => new Array(n).fill(false));
    const dirs = [-1, 0, 1, 0, -1];
    const dfs = (i: number, j: number, c: number) => {
        vis[i][j] = true;
        for (let k = 0; k < 4; ++k) {
            const x = i + dirs[k];
            const y = j + dirs[k + 1];
            if (x >= 0 && x < m && y >= 0 && y < n) {
                if (!vis[x][y]) {
                    if (grid[x][y] == c) {
                        dfs(x, y, c);
                    } else {
                        grid[i][j] = color;
                    }
                }
            } else {
                grid[i][j] = color;
            }
        }
    };
    dfs(row, col, grid[row][col]);
    return grid;
}
  |