978. Longest Turbulent Subarray
Description
Given an integer array arr, return the length of a maximum size turbulent subarray of arr.
A subarray is turbulent if the comparison sign flips between each adjacent pair of elements in the subarray.
More formally, a subarray [arr[i], arr[i + 1], ..., arr[j]] of arr is said to be turbulent if and only if:
- For
i <= k < j:arr[k] > arr[k + 1]whenkis odd, andarr[k] < arr[k + 1]whenkis even.
- Or, for
i <= k < j:arr[k] > arr[k + 1]whenkis even, andarr[k] < arr[k + 1]whenkis odd.
Example 1:
Input: arr = [9,4,2,10,7,8,8,1,9] Output: 5 Explanation: arr[1] > arr[2] < arr[3] > arr[4] < arr[5]
Example 2:
Input: arr = [4,8,12,16] Output: 2
Example 3:
Input: arr = [100] Output: 1
Constraints:
1 <= arr.length <= 4 * 1040 <= arr[i] <= 109
Solutions
Solution 1: Dynamic Programming
We define \(f[i]\) as the length of the longest turbulent subarray ending at \(\textit{nums}[i]\) with an increasing state, and \(g[i]\) as the length of the longest turbulent subarray ending at \(\textit{nums}[i]\) with a decreasing state. Initially, \(f[0] = 1\), \(g[0] = 1\). The answer is \(\max(f[i], g[i])\).
For \(i \gt 0\), if \(\textit{nums}[i] \gt \textit{nums}[i - 1]\), then \(f[i] = g[i - 1] + 1\), otherwise \(f[i] = 1\); if \(\textit{nums}[i] \lt \textit{nums}[i - 1]\), then \(g[i] = f[i - 1] + 1\), otherwise \(g[i] = 1\).
Since \(f[i]\) and \(g[i]\) are only related to \(f[i - 1]\) and \(g[i - 1]\), two variables can be used instead of arrays.
The time complexity is \(O(n)\), where \(n\) is the length of the array. The space complexity is \(O(1)\).
1 2 3 4 5 6 7 8 9 | |
1 2 3 4 5 6 7 8 9 10 11 12 13 | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | |
1 2 3 4 5 6 7 8 9 10 11 12 13 | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | |