Binary Tree 
      
    
      
      
      
        Breadth-First Search 
      
    
      
      
      
        Depth-First Search 
      
    
      
      
      
        Tree 
      
    
   
  
    
      
       
     
  
  
    
      
    
    
      
       
     
  
Description 
You are given two binary trees root1 and root2.
Imagine that when you put one of them to cover the other, some nodes of the two trees are overlapped while the others are not. You need to merge the two trees into a new binary tree. The merge rule is that if two nodes overlap, then sum node values up as the new value of the merged node. Otherwise, the NOT null node will be used as the node of the new tree.
Return the merged tree .
Note:  The merging process must start from the root nodes of both trees.
 
Example 1: 
Input:  root1 = [1,3,2,5], root2 = [2,1,3,null,4,null,7]
Output:  [3,4,5,5,4,null,7]
 
Example 2: 
Input:  root1 = [1], root2 = [1,2]
Output:  [2,2]
 
 
Constraints: 
    The number of nodes in both trees is in the range [0, 2000]. 
    -104  <= Node.val <= 104  
 
Solutions 
Solution 1 
Python3 Java C++ Go TypeScript Rust JavaScript 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 # Definition for a binary tree node. 
# class TreeNode: 
#     def __init__(self, val=0, left=None, right=None): 
#         self.val = val 
#         self.left = left 
#         self.right = right 
class   Solution : 
    def   mergeTrees ( 
        self ,  root1 :  Optional [ TreeNode ],  root2 :  Optional [ TreeNode ] 
    )  ->  Optional [ TreeNode ]: 
        if  root1  is  None : 
            return  root2 
        if  root2  is  None : 
            return  root1 
        node  =  TreeNode ( root1 . val  +  root2 . val ) 
        node . left  =  self . mergeTrees ( root1 . left ,  root2 . left ) 
        node . right  =  self . mergeTrees ( root1 . right ,  root2 . right ) 
        return  node 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 /** 
 * Definition for a binary tree node. 
 * public class TreeNode { 
 *     int val; 
 *     TreeNode left; 
 *     TreeNode right; 
 *     TreeNode() {} 
 *     TreeNode(int val) { this.val = val; } 
 *     TreeNode(int val, TreeNode left, TreeNode right) { 
 *         this.val = val; 
 *         this.left = left; 
 *         this.right = right; 
 *     } 
 * } 
 */ 
class  Solution   { 
     public   TreeNode   mergeTrees ( TreeNode   root1 ,   TreeNode   root2 )   { 
         if   ( root1   ==   null )   { 
             return   root2 ; 
         } 
         if   ( root2   ==   null )   { 
             return   root1 ; 
         } 
         TreeNode   node   =   new   TreeNode ( root1 . val   +   root2 . val ); 
         node . left   =   mergeTrees ( root1 . left ,   root2 . left ); 
         node . right   =   mergeTrees ( root1 . right ,   root2 . right ); 
         return   node ; 
     } 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 /** 
 * Definition for a binary tree node. 
 * struct TreeNode { 
 *     int val; 
 *     TreeNode *left; 
 *     TreeNode *right; 
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} 
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} 
 * }; 
 */ 
class   Solution   { 
public : 
     TreeNode *   mergeTrees ( TreeNode *   root1 ,   TreeNode *   root2 )   { 
         if   ( ! root1 )   return   root2 ; 
         if   ( ! root2 )   return   root1 ; 
         TreeNode *   node   =   new   TreeNode ( root1 -> val   +   root2 -> val ); 
         node -> left   =   mergeTrees ( root1 -> left ,   root2 -> left ); 
         node -> right   =   mergeTrees ( root1 -> right ,   root2 -> right ); 
         return   node ; 
     } 
}; 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 /** 
 * Definition for a binary tree node. 
 * type TreeNode struct { 
 *     Val int 
 *     Left *TreeNode 
 *     Right *TreeNode 
 * } 
 */ 
func   mergeTrees ( root1   * TreeNode ,   root2   * TreeNode )   * TreeNode   { 
     if   root1   ==   nil   { 
         return   root2 
     } 
     if   root2   ==   nil   { 
         return   root1 
     } 
     node   :=   & TreeNode { Val :   root1 . Val   +   root2 . Val } 
     node . Left   =   mergeTrees ( root1 . Left ,   root2 . Left ) 
     node . Right   =   mergeTrees ( root1 . Right ,   root2 . Right ) 
     return   node 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 /** 
 * Definition for a binary tree node. 
 * class TreeNode { 
 *     val: number 
 *     left: TreeNode | null 
 *     right: TreeNode | null 
 *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) { 
 *         this.val = (val===undefined ? 0 : val) 
 *         this.left = (left===undefined ? null : left) 
 *         this.right = (right===undefined ? null : right) 
 *     } 
 * } 
 */ 
function   mergeTrees ( root1 :   TreeNode   |   null ,   root2 :   TreeNode   |   null ) :   TreeNode   |   null   { 
     if   ( root1   ===   null   &&   root2   ===   null )   return   null ; 
     if   ( root1   ===   null )   return   root2 ; 
     if   ( root2   ===   null )   return   root1 ; 
     const   left   =   mergeTrees ( root1 . left ,   root2 . left ); 
     const   right   =   mergeTrees ( root1 . right ,   root2 . right ); 
     return   new   TreeNode ( root1 . val   +   root2 . val ,   left ,   right ); 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 // Definition for a binary tree node. 
// #[derive(Debug, PartialEq, Eq)] 
// pub struct TreeNode { 
//   pub val: i32, 
//   pub left: Option<Rc<RefCell<TreeNode>>>, 
//   pub right: Option<Rc<RefCell<TreeNode>>>, 
// } 
// 
// impl TreeNode { 
//   #[inline] 
//   pub fn new(val: i32) -> Self { 
//     TreeNode { 
//       val, 
//       left: None, 
//       right: None 
//     } 
//   } 
// } 
use   std :: cell :: RefCell ; 
use   std :: rc :: Rc ; 
impl   Solution   { 
     pub   fn   merge_trees ( 
         root1 :   Option < Rc < RefCell < TreeNode >>> , 
         root2 :   Option < Rc < RefCell < TreeNode >>> , 
     )   ->   Option < Rc < RefCell < TreeNode >>>   { 
         match   ( root1 . is_some (),   root2 . is_some ())   { 
             ( false ,   false )   =>   None , 
             ( true ,   false )   =>   root1 , 
             ( false ,   true )   =>   root2 , 
             ( true ,   true )   =>   { 
                 { 
                     let   mut   r1   =   root1 . as_ref (). unwrap (). borrow_mut (); 
                     let   mut   r2   =   root2 . as_ref (). unwrap (). borrow_mut (); 
                     r1 . val   +=   r2 . val ; 
                     r1 . left   =   Self :: merge_trees ( r1 . left . take (),   r2 . left . take ()); 
                     r1 . right   =   Self :: merge_trees ( r1 . right . take (),   r2 . right . take ()); 
                 } 
                 root1 
             } 
         } 
     } 
} 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 /** 
 * Definition for a binary tree node. 
 * function TreeNode(val, left, right) { 
 *     this.val = (val===undefined ? 0 : val) 
 *     this.left = (left===undefined ? null : left) 
 *     this.right = (right===undefined ? null : right) 
 * } 
 */ 
/** 
 * @param {TreeNode} root1 
 * @param {TreeNode} root2 
 * @return {TreeNode} 
 */ 
var   mergeTrees   =   function   ( root1 ,   root2 )   { 
     if   ( ! root1 )   { 
         return   root2 ; 
     } 
     if   ( ! root2 )   { 
         return   root1 ; 
     } 
     const   node   =   new   TreeNode ( root1 . val   +   root2 . val ); 
     node . left   =   mergeTrees ( root1 . left ,   root2 . left ); 
     node . right   =   mergeTrees ( root1 . right ,   root2 . right ); 
     return   node ; 
};