Skip to content

3602. Hexadecimal and Hexatrigesimal Conversion

Description

You are given an integer n.

Return the concatenation of the hexadecimal representation of n2 and the hexatrigesimal representation of n3.

A hexadecimal number is defined as a base-16 numeral system that uses the digits 0 – 9 and the uppercase letters A - F to represent values from 0 to 15.

A hexatrigesimal number is defined as a base-36 numeral system that uses the digits 0 – 9 and the uppercase letters A - Z to represent values from 0 to 35.

 

Example 1:

Input: n = 13

Output: "A91P1"

Explanation:

  • n2 = 13 * 13 = 169. In hexadecimal, it converts to (10 * 16) + 9 = 169, which corresponds to "A9".
  • n3 = 13 * 13 * 13 = 2197. In hexatrigesimal, it converts to (1 * 362) + (25 * 36) + 1 = 2197, which corresponds to "1P1".
  • Concatenating both results gives "A9" + "1P1" = "A91P1".

Example 2:

Input: n = 36

Output: "5101000"

Explanation:

  • n2 = 36 * 36 = 1296. In hexadecimal, it converts to (5 * 162) + (1 * 16) + 0 = 1296, which corresponds to "510".
  • n3 = 36 * 36 * 36 = 46656. In hexatrigesimal, it converts to (1 * 363) + (0 * 362) + (0 * 36) + 0 = 46656, which corresponds to "1000".
  • Concatenating both results gives "510" + "1000" = "5101000".

 

Constraints:

  • 1 <= n <= 1000

Solutions

Solution 1

1

1

1

1

Comments