Skip to content

3586. Find COVID Recovery Patients

Description

Table: patients

+-------------+---------+
| Column Name | Type    |
+-------------+---------+
| patient_id  | int     |
| patient_name| varchar |
| age         | int     |
+-------------+---------+
patient_id is the unique identifier for this table.
Each row contains information about a patient.

Table: covid_tests

+-------------+---------+
| Column Name | Type    |
+-------------+---------+
| test_id     | int     |
| patient_id  | int     |
| test_date   | date    |
| result      | varchar |
+-------------+---------+
test_id is the unique identifier for this table.
Each row represents a COVID test result. The result can be Positive, Negative, or Inconclusive.

Write a solution to find patients who have recovered from COVID - patients who tested positive but later tested negative.

  • A patient is considered recovered if they have at least one Positive test followed by at least one Negative test on a later date
  • Calculate the recovery time in days as the difference between the first positive test and the first negative test after that positive test
  • Only include patients who have both positive and negative test results

Return the result table ordered by recovery_time in ascending order, then by patient_name in ascending order.

The result format is in the following example.

 

Example:

Input:

patients table:

+------------+--------------+-----+
| patient_id | patient_name | age |
+------------+--------------+-----+
| 1          | Alice Smith  | 28  |
| 2          | Bob Johnson  | 35  |
| 3          | Carol Davis  | 42  |
| 4          | David Wilson | 31  |
| 5          | Emma Brown   | 29  |
+------------+--------------+-----+

covid_tests table:

+---------+------------+------------+--------------+
| test_id | patient_id | test_date  | result       |
+---------+------------+------------+--------------+
| 1       | 1          | 2023-01-15 | Positive     |
| 2       | 1          | 2023-01-25 | Negative     |
| 3       | 2          | 2023-02-01 | Positive     |
| 4       | 2          | 2023-02-05 | Inconclusive |
| 5       | 2          | 2023-02-12 | Negative     |
| 6       | 3          | 2023-01-20 | Negative     |
| 7       | 3          | 2023-02-10 | Positive     |
| 8       | 3          | 2023-02-20 | Negative     |
| 9       | 4          | 2023-01-10 | Positive     |
| 10      | 4          | 2023-01-18 | Positive     |
| 11      | 5          | 2023-02-15 | Negative     |
| 12      | 5          | 2023-02-20 | Negative     |
+---------+------------+------------+--------------+

Output:

+------------+--------------+-----+---------------+
| patient_id | patient_name | age | recovery_time |
+------------+--------------+-----+---------------+
| 1          | Alice Smith  | 28  | 10            |
| 3          | Carol Davis  | 42  | 10            |
| 2          | Bob Johnson  | 35  | 11            |
+------------+--------------+-----+---------------+

Explanation:

  • Alice Smith (patient_id = 1):
    • First positive test: 2023-01-15
    • First negative test after positive: 2023-01-25
    • Recovery time: 25 - 15 = 10 days
  • Bob Johnson (patient_id = 2):
    • First positive test: 2023-02-01
    • Inconclusive test on 2023-02-05 (ignored for recovery calculation)
    • First negative test after positive: 2023-02-12
    • Recovery time: 12 - 1 = 11 days
  • Carol Davis (patient_id = 3):
    • Had negative test on 2023-01-20 (before positive test)
    • First positive test: 2023-02-10
    • First negative test after positive: 2023-02-20
    • Recovery time: 20 - 10 = 10 days
  • Patients not included:
    • David Wilson (patient_id = 4): Only has positive tests, no negative test after positive
    • Emma Brown (patient_id = 5): Only has negative tests, never tested positive

Output table is ordered by recovery_time in ascending order, and then by patient_name in ascending order.

Solutions

Solution 1: Group Statistics + Equi-join

We can first find the date of the first positive test for each patient and record this in table first_positive. Next, we can find the date of the first negative test for each patient after their first positive test in the covid_tests table, and record this in table first_negative_after_positive. Finally, we join these two tables with the patients table, calculate the recovery time, and sort according to requirements.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
# Write your MySQL query statement below
WITH
    first_positive AS (
        SELECT
            patient_id,
            MIN(test_date) AS first_positive_date
        FROM covid_tests
        WHERE result = 'Positive'
        GROUP BY patient_id
    ),
    first_negative_after_positive AS (
        SELECT
            t.patient_id,
            MIN(t.test_date) AS first_negative_date
        FROM
            covid_tests t
            JOIN first_positive p
                ON t.patient_id = p.patient_id AND t.test_date > p.first_positive_date
        WHERE t.result = 'Negative'
        GROUP BY t.patient_id
    )
SELECT
    p.patient_id,
    p.patient_name,
    p.age,
    DATEDIFF(n.first_negative_date, f.first_positive_date) AS recovery_time
FROM
    first_positive f
    JOIN first_negative_after_positive n ON f.patient_id = n.patient_id
    JOIN patients p ON p.patient_id = f.patient_id
ORDER BY recovery_time ASC, patient_name ASC;
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import pandas as pd


def find_covid_recovery_patients(
    patients: pd.DataFrame, covid_tests: pd.DataFrame
) -> pd.DataFrame:
    covid_tests["test_date"] = pd.to_datetime(covid_tests["test_date"])

    pos = (
        covid_tests[covid_tests["result"] == "Positive"]
        .groupby("patient_id", as_index=False)["test_date"]
        .min()
    )
    pos.rename(columns={"test_date": "first_positive_date"}, inplace=True)

    neg = covid_tests.merge(pos, on="patient_id")
    neg = neg[
        (neg["result"] == "Negative") & (neg["test_date"] > neg["first_positive_date"])
    ]
    neg = neg.groupby("patient_id", as_index=False)["test_date"].min()
    neg.rename(columns={"test_date": "first_negative_date"}, inplace=True)

    df = pos.merge(neg, on="patient_id")
    df["recovery_time"] = (
        df["first_negative_date"] - df["first_positive_date"]
    ).dt.days

    out = df.merge(patients, on="patient_id")[
        ["patient_id", "patient_name", "age", "recovery_time"]
    ]
    return out.sort_values(by=["recovery_time", "patient_name"]).reset_index(drop=True)

Comments