3532. Path Existence Queries in a Graph I
Description
You are given an integer n
representing the number of nodes in a graph, labeled from 0 to n - 1
.
You are also given an integer array nums
of length n
sorted in non-decreasing order, and an integer maxDiff
.
An undirected edge exists between nodes i
and j
if the absolute difference between nums[i]
and nums[j]
is at most maxDiff
(i.e., |nums[i] - nums[j]| <= maxDiff
).
You are also given a 2D integer array queries
. For each queries[i] = [ui, vi]
, determine whether there exists a path between nodes ui
and vi
.
Return a boolean array answer
, where answer[i]
is true
if there exists a path between ui
and vi
in the ith
query and false
otherwise.
Example 1:
Input: n = 2, nums = [1,3], maxDiff = 1, queries = [[0,0],[0,1]]
Output: [true,false]
Explanation:
- Query
[0,0]
: Node 0 has a trivial path to itself. - Query
[0,1]
: There is no edge between Node 0 and Node 1 because|nums[0] - nums[1]| = |1 - 3| = 2
, which is greater thanmaxDiff
. - Thus, the final answer after processing all the queries is
[true, false]
.
Example 2:
Input: n = 4, nums = [2,5,6,8], maxDiff = 2, queries = [[0,1],[0,2],[1,3],[2,3]]
Output: [false,false,true,true]
Explanation:
The resulting graph is:
- Query
[0,1]
: There is no edge between Node 0 and Node 1 because|nums[0] - nums[1]| = |2 - 5| = 3
, which is greater thanmaxDiff
. - Query
[0,2]
: There is no edge between Node 0 and Node 2 because|nums[0] - nums[2]| = |2 - 6| = 4
, which is greater thanmaxDiff
. - Query
[1,3]
: There is a path between Node 1 and Node 3 through Node 2 since|nums[1] - nums[2]| = |5 - 6| = 1
and|nums[2] - nums[3]| = |6 - 8| = 2
, both of which are withinmaxDiff
. - Query
[2,3]
: There is an edge between Node 2 and Node 3 because|nums[2] - nums[3]| = |6 - 8| = 2
, which is equal tomaxDiff
. - Thus, the final answer after processing all the queries is
[false, false, true, true]
.
Constraints:
1 <= n == nums.length <= 105
0 <= nums[i] <= 105
nums
is sorted in non-decreasing order.0 <= maxDiff <= 105
1 <= queries.length <= 105
queries[i] == [ui, vi]
0 <= ui, vi < n
Solutions
Solution 1
1 |
|
1 |
|
1 |
|
1 |
|