Skip to content

3499. Maximize Active Section with Trade I

Description

You are given a binary string s of length n, where:

  • '1' represents an active section.
  • '0' represents an inactive section.

You can perform at most one trade to maximize the number of active sections in s. In a trade, you:

  • Convert a contiguous block of '1's that is surrounded by '0's to all '0's.
  • Afterward, convert a contiguous block of '0's that is surrounded by '1's to all '1's.

Return the maximum number of active sections in s after making the optimal trade.

Note: Treat s as if it is augmented with a '1' at both ends, forming t = '1' + s + '1'. The augmented '1's do not contribute to the final count.

 

Example 1:

Input: s = "01"

Output: 1

Explanation:

Because there is no block of '1's surrounded by '0's, no valid trade is possible. The maximum number of active sections is 1.

Example 2:

Input: s = "0100"

Output: 4

Explanation:

  • String "0100" → Augmented to "101001".
  • Choose "0100", convert "101001""100001""111111".
  • The final string without augmentation is "1111". The maximum number of active sections is 4.

Example 3:

Input: s = "1000100"

Output: 7

Explanation:

  • String "1000100" → Augmented to "110001001".
  • Choose "000100", convert "110001001""110000001""111111111".
  • The final string without augmentation is "1111111". The maximum number of active sections is 7.

Example 4:

Input: s = "01010"

Output: 4

Explanation:

  • String "01010" → Augmented to "1010101".
  • Choose "010", convert "1010101""1000101""1111101".
  • The final string without augmentation is "11110". The maximum number of active sections is 4.

 

Constraints:

  • 1 <= n == s.length <= 105
  • s[i] is either '0' or '1'

Solutions

Solution 1: Greedy + Two Pointers

The problem is essentially equivalent to finding the number of '1' characters in the string s, plus the maximum number of '0' characters in two adjacent consecutive '0' segments.

Thus, we can use two pointers to traverse the string s. Use a variable mx to record the maximum number of '0' characters in two adjacent consecutive '0' segments. We also need a variable pre to record the number of '0' characters in the previous consecutive '0' segment.

Each time, we count the number of consecutive identical characters cnt. If the current character is '1', add cnt to the answer. If the current character is '0', update mx as mx=max(mx,pre+cnt), and update pre to cnt. Finally, add mx to the answer.

Time complexity is O(n), where n is the length of the string s. Space complexity is O(1).

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
class Solution:
    def maxActiveSectionsAfterTrade(self, s: str) -> int:
        n = len(s)
        ans = i = 0
        pre, mx = -inf, 0
        while i < n:
            j = i + 1
            while j < n and s[j] == s[i]:
                j += 1
            cur = j - i
            if s[i] == "1":
                ans += cur
            else:
                mx = max(mx, pre + cur)
                pre = cur
            i = j
        ans += mx
        return ans
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
class Solution {
    public int maxActiveSectionsAfterTrade(String s) {
        int n = s.length();
        int ans = 0, i = 0;
        int pre = Integer.MIN_VALUE, mx = 0;

        while (i < n) {
            int j = i + 1;
            while (j < n && s.charAt(j) == s.charAt(i)) {
                j++;
            }
            int cur = j - i;
            if (s.charAt(i) == '1') {
                ans += cur;
            } else {
                mx = Math.max(mx, pre + cur);
                pre = cur;
            }
            i = j;
        }

        ans += mx;
        return ans;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
class Solution {
public:
    int maxActiveSectionsAfterTrade(std::string s) {
        int n = s.length();
        int ans = 0, i = 0;
        int pre = INT_MIN, mx = 0;

        while (i < n) {
            int j = i + 1;
            while (j < n && s[j] == s[i]) {
                j++;
            }
            int cur = j - i;
            if (s[i] == '1') {
                ans += cur;
            } else {
                mx = std::max(mx, pre + cur);
                pre = cur;
            }
            i = j;
        }

        ans += mx;
        return ans;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
func maxActiveSectionsAfterTrade(s string) (ans int) {
    n := len(s)
    pre, mx := math.MinInt, 0

    for i := 0; i < n; {
        j := i + 1
        for j < n && s[j] == s[i] {
            j++
        }
        cur := j - i
        if s[i] == '1' {
            ans += cur
        } else {
            mx = max(mx, pre+cur)
            pre = cur
        }
        i = j
    }

    ans += mx
    return
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
function maxActiveSectionsAfterTrade(s: string): number {
    let n = s.length;
    let [ans, mx] = [0, 0];
    let pre = Number.MIN_SAFE_INTEGER;

    for (let i = 0; i < n; ) {
        let j = i + 1;
        while (j < n && s[j] === s[i]) {
            j++;
        }
        let cur = j - i;
        if (s[i] === '1') {
            ans += cur;
        } else {
            mx = Math.max(mx, pre + cur);
            pre = cur;
        }
        i = j;
    }

    ans += mx;
    return ans;
}
Was this page helpful?

Comments