Skip to content

3493. Properties Graph

Description

You are given a 2D integer array properties having dimensions n x m and an integer k.

Define a function intersect(a, b) that returns the number of distinct integers common to both arrays a and b.

Construct an undirected graph where each index i corresponds to properties[i]. There is an edge between node i and node j if and only if intersect(properties[i], properties[j]) >= k, where i and j are in the range [0, n - 1] and i != j.

Return the number of connected components in the resulting graph.

 

Example 1:

Input: properties = [[1,2],[1,1],[3,4],[4,5],[5,6],[7,7]], k = 1

Output: 3

Explanation:

The graph formed has 3 connected components:

Example 2:

Input: properties = [[1,2,3],[2,3,4],[4,3,5]], k = 2

Output: 1

Explanation:

The graph formed has 1 connected component:

Example 3:

Input: properties = [[1,1],[1,1]], k = 2

Output: 2

Explanation:

intersect(properties[0], properties[1]) = 1, which is less than k. This means there is no edge between properties[0] and properties[1] in the graph.

 

Constraints:

  • 1 <= n == properties.length <= 100
  • 1 <= m == properties[i].length <= 100
  • 1 <= properties[i][j] <= 100
  • 1 <= k <= m

Solutions

Solution 1: Hash Table + DFS

We first convert each attribute array into a hash table and store them in a hash table array \(\textit{ss}\). We define a graph \(\textit{g}\), where \(\textit{g}[i]\) stores the indices of attribute arrays that are connected to \(\textit{properties}[i]\).

Then, we iterate through all attribute hash tables. For each pair of attribute hash tables \((i, j)\) where \(j < i\), we check whether the number of common elements between them is at least \(k\). If so, we add an edge from \(i\) to \(j\) in the graph \(\textit{g}\), as well as an edge from \(j\) to \(i\).

Finally, we use Depth-First Search (DFS) to compute the number of connected components in the graph \(\textit{g}\).

The time complexity is \(O(n^2 \times m)\), and the space complexity is \(O(n \times m)\), where \(n\) is the length of the attribute arrays and \(m\) is the number of elements in an attribute array.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
class Solution:
    def numberOfComponents(self, properties: List[List[int]], k: int) -> int:
        def dfs(i: int) -> None:
            vis[i] = True
            for j in g[i]:
                if not vis[j]:
                    dfs(j)

        n = len(properties)
        ss = list(map(set, properties))
        g = [[] for _ in range(n)]
        for i, s1 in enumerate(ss):
            for j in range(i):
                s2 = ss[j]
                if len(s1 & s2) >= k:
                    g[i].append(j)
                    g[j].append(i)
        ans = 0
        vis = [False] * n
        for i in range(n):
            if not vis[i]:
                dfs(i)
                ans += 1
        return ans
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
class Solution {
    private List<Integer>[] g;
    private boolean[] vis;

    public int numberOfComponents(int[][] properties, int k) {
        int n = properties.length;
        g = new List[n];
        Set<Integer>[] ss = new Set[n];
        Arrays.setAll(g, i -> new ArrayList<>());
        Arrays.setAll(ss, i -> new HashSet<>());
        for (int i = 0; i < n; ++i) {
            for (int x : properties[i]) {
                ss[i].add(x);
            }
        }
        for (int i = 0; i < n; ++i) {
            for (int j = 0; j < i; ++j) {
                int cnt = 0;
                for (int x : ss[i]) {
                    if (ss[j].contains(x)) {
                        ++cnt;
                    }
                }
                if (cnt >= k) {
                    g[i].add(j);
                    g[j].add(i);
                }
            }
        }

        int ans = 0;
        vis = new boolean[n];
        for (int i = 0; i < n; ++i) {
            if (!vis[i]) {
                dfs(i);
                ++ans;
            }
        }
        return ans;
    }

    private void dfs(int i) {
        vis[i] = true;
        for (int j : g[i]) {
            if (!vis[j]) {
                dfs(j);
            }
        }
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
class Solution {
public:
    int numberOfComponents(vector<vector<int>>& properties, int k) {
        int n = properties.size();
        unordered_set<int> ss[n];
        vector<int> g[n];
        for (int i = 0; i < n; ++i) {
            for (int x : properties[i]) {
                ss[i].insert(x);
            }
        }
        for (int i = 0; i < n; ++i) {
            auto& s1 = ss[i];
            for (int j = 0; j < i; ++j) {
                auto& s2 = ss[j];
                int cnt = 0;
                for (int x : s1) {
                    if (s2.contains(x)) {
                        ++cnt;
                    }
                }
                if (cnt >= k) {
                    g[i].push_back(j);
                    g[j].push_back(i);
                }
            }
        }
        int ans = 0;
        vector<bool> vis(n);
        auto dfs = [&](this auto&& dfs, int i) -> void {
            vis[i] = true;
            for (int j : g[i]) {
                if (!vis[j]) {
                    dfs(j);
                }
            }
        };
        for (int i = 0; i < n; ++i) {
            if (!vis[i]) {
                dfs(i);
                ++ans;
            }
        }
        return ans;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
func numberOfComponents(properties [][]int, k int) (ans int) {
    n := len(properties)
    ss := make([]map[int]struct{}, n)
    g := make([][]int, n)

    for i := 0; i < n; i++ {
        ss[i] = make(map[int]struct{})
        for _, x := range properties[i] {
            ss[i][x] = struct{}{}
        }
    }

    for i := 0; i < n; i++ {
        for j := 0; j < i; j++ {
            cnt := 0
            for x := range ss[i] {
                if _, ok := ss[j][x]; ok {
                    cnt++
                }
            }
            if cnt >= k {
                g[i] = append(g[i], j)
                g[j] = append(g[j], i)
            }
        }
    }

    vis := make([]bool, n)
    var dfs func(int)
    dfs = func(i int) {
        vis[i] = true
        for _, j := range g[i] {
            if !vis[j] {
                dfs(j)
            }
        }
    }

    for i := 0; i < n; i++ {
        if !vis[i] {
            dfs(i)
            ans++
        }
    }
    return
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
function numberOfComponents(properties: number[][], k: number): number {
    const n = properties.length;
    const ss: Set<number>[] = Array.from({ length: n }, () => new Set());
    const g: number[][] = Array.from({ length: n }, () => []);

    for (let i = 0; i < n; i++) {
        for (const x of properties[i]) {
            ss[i].add(x);
        }
    }

    for (let i = 0; i < n; i++) {
        for (let j = 0; j < i; j++) {
            let cnt = 0;
            for (const x of ss[i]) {
                if (ss[j].has(x)) {
                    cnt++;
                }
            }
            if (cnt >= k) {
                g[i].push(j);
                g[j].push(i);
            }
        }
    }

    let ans = 0;
    const vis: boolean[] = Array(n).fill(false);

    const dfs = (i: number) => {
        vis[i] = true;
        for (const j of g[i]) {
            if (!vis[j]) {
                dfs(j);
            }
        }
    };

    for (let i = 0; i < n; i++) {
        if (!vis[i]) {
            dfs(i);
            ans++;
        }
    }
    return ans;
}

Comments