Skip to content

3440. Reschedule Meetings for Maximum Free Time II

Description

You are given an integer eventTime denoting the duration of an event. You are also given two integer arrays startTime and endTime, each of length n.

These represent the start and end times of n non-overlapping meetings that occur during the event between time t = 0 and time t = eventTime, where the ith meeting occurs during the time [startTime[i], endTime[i]].

You can reschedule at most one meeting by moving its start time while maintaining the same duration, such that the meetings remain non-overlapping, to maximize the longest continuous period of free time during the event.

Return the maximum amount of free time possible after rearranging the meetings.

Note that the meetings can not be rescheduled to a time outside the event and they should remain non-overlapping.

Note: In this version, it is valid for the relative ordering of the meetings to change after rescheduling one meeting.

 

Example 1:

Input: eventTime = 5, startTime = [1,3], endTime = [2,5]

Output: 2

Explanation:

Reschedule the meeting at [1, 2] to [2, 3], leaving no meetings during the time [0, 2].

Example 2:

Input: eventTime = 10, startTime = [0,7,9], endTime = [1,8,10]

Output: 7

Explanation:

Reschedule the meeting at [0, 1] to [8, 9], leaving no meetings during the time [0, 7].

Example 3:

Input: eventTime = 10, startTime = [0,3,7,9], endTime = [1,4,8,10]

Output: 6

Explanation:

Reschedule the meeting at [3, 4] to [8, 9], leaving no meetings during the time [1, 7].

Example 4:

Input: eventTime = 5, startTime = [0,1,2,3,4], endTime = [1,2,3,4,5]

Output: 0

Explanation:

There is no time during the event not occupied by meetings.

 

Constraints:

  • 1 <= eventTime <= 109
  • n == startTime.length == endTime.length
  • 2 <= n <= 105
  • 0 <= startTime[i] < endTime[i] <= eventTime
  • endTime[i] <= startTime[i + 1] where i lies in the range [0, n - 2].

Solutions

Solution 1: Greedy

According to the problem description, for meeting \(i\), let \(l_i\) be the non-free position to its left, \(r_i\) be the non-free position to its right, and let the duration of meeting \(i\) be \(w_i = \text{endTime}[i] - \text{startTime}[i]\). Then:

\[ l_i = \begin{cases} 0 & i = 0 \\\\ \text{endTime}[i - 1] & i > 0 \end{cases} \]
\[ r_i = \begin{cases} \text{eventTime} & i = n - 1 \\\\ \text{startTime}[i + 1] & i < n - 1 \end{cases} \]

The meeting can be moved to the left or right, and the free time in this case is:

\[ r_i - l_i - w_i \]

If there exists a maximum free time on the left, \(\text{pre}_{i - 1}\), such that \(\text{pre}_{i - 1} \geq w_i\), then meeting \(i\) can be moved to that position on the left, resulting in a new free time:

\[ r_i - l_i \]

Similarly, if there exists a maximum free time on the right, \(\text{suf}_{i + 1}\), such that \(\text{suf}_{i + 1} \geq w_i\), then meeting \(i\) can be moved to that position on the right, resulting in a new free time:

\[ r_i - l_i \]

Therefore, we first preprocess two arrays, \(\text{pre}\) and \(\text{suf}\), where \(\text{pre}[i]\) represents the maximum free time in the range \([0, i]\), and \(\text{suf}[i]\) represents the maximum free time in the range \([i, n - 1]\). Then, for each meeting \(i\), we calculate the maximum free time after moving it, and take the maximum value.

The time complexity is \(O(n)\), and the space complexity is \(O(n)\), where \(n\) is the number of meetings.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
class Solution:
    def maxFreeTime(
        self, eventTime: int, startTime: List[int], endTime: List[int]
    ) -> int:
        n = len(startTime)
        pre = [0] * n
        suf = [0] * n
        pre[0] = startTime[0]
        suf[n - 1] = eventTime - endTime[-1]
        for i in range(1, n):
            pre[i] = max(pre[i - 1], startTime[i] - endTime[i - 1])
        for i in range(n - 2, -1, -1):
            suf[i] = max(suf[i + 1], startTime[i + 1] - endTime[i])
        ans = 0
        for i in range(n):
            l = 0 if i == 0 else endTime[i - 1]
            r = eventTime if i == n - 1 else startTime[i + 1]
            w = endTime[i] - startTime[i]
            ans = max(ans, r - l - w)
            if i and pre[i - 1] >= w:
                ans = max(ans, r - l)
            elif i + 1 < n and suf[i + 1] >= w:
                ans = max(ans, r - l)
        return ans
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
class Solution {
    public int maxFreeTime(int eventTime, int[] startTime, int[] endTime) {
        int n = startTime.length;
        int[] pre = new int[n];
        int[] suf = new int[n];

        pre[0] = startTime[0];
        suf[n - 1] = eventTime - endTime[n - 1];

        for (int i = 1; i < n; i++) {
            pre[i] = Math.max(pre[i - 1], startTime[i] - endTime[i - 1]);
        }

        for (int i = n - 2; i >= 0; i--) {
            suf[i] = Math.max(suf[i + 1], startTime[i + 1] - endTime[i]);
        }

        int ans = 0;
        for (int i = 0; i < n; i++) {
            int l = (i == 0) ? 0 : endTime[i - 1];
            int r = (i == n - 1) ? eventTime : startTime[i + 1];
            int w = endTime[i] - startTime[i];
            ans = Math.max(ans, r - l - w);

            if (i > 0 && pre[i - 1] >= w) {
                ans = Math.max(ans, r - l);
            } else if (i + 1 < n && suf[i + 1] >= w) {
                ans = Math.max(ans, r - l);
            }
        }

        return ans;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
class Solution {
public:
    int maxFreeTime(int eventTime, vector<int>& startTime, vector<int>& endTime) {
        int n = startTime.size();
        vector<int> pre(n), suf(n);

        pre[0] = startTime[0];
        suf[n - 1] = eventTime - endTime[n - 1];

        for (int i = 1; i < n; ++i) {
            pre[i] = max(pre[i - 1], startTime[i] - endTime[i - 1]);
        }

        for (int i = n - 2; i >= 0; --i) {
            suf[i] = max(suf[i + 1], startTime[i + 1] - endTime[i]);
        }

        int ans = 0;
        for (int i = 0; i < n; ++i) {
            int l = (i == 0) ? 0 : endTime[i - 1];
            int r = (i == n - 1) ? eventTime : startTime[i + 1];
            int w = endTime[i] - startTime[i];
            ans = max(ans, r - l - w);

            if (i > 0 && pre[i - 1] >= w) {
                ans = max(ans, r - l);
            } else if (i + 1 < n && suf[i + 1] >= w) {
                ans = max(ans, r - l);
            }
        }

        return ans;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
func maxFreeTime(eventTime int, startTime []int, endTime []int) int {
    n := len(startTime)
    pre := make([]int, n)
    suf := make([]int, n)

    pre[0] = startTime[0]
    suf[n-1] = eventTime - endTime[n-1]

    for i := 1; i < n; i++ {
        pre[i] = max(pre[i-1], startTime[i]-endTime[i-1])
    }

    for i := n - 2; i >= 0; i-- {
        suf[i] = max(suf[i+1], startTime[i+1]-endTime[i])
    }

    ans := 0
    for i := 0; i < n; i++ {
        l := 0
        if i > 0 {
            l = endTime[i-1]
        }
        r := eventTime
        if i < n-1 {
            r = startTime[i+1]
        }
        w := endTime[i] - startTime[i]
        ans = max(ans, r-l-w)

        if i > 0 && pre[i-1] >= w {
            ans = max(ans, r-l)
        } else if i+1 < n && suf[i+1] >= w {
            ans = max(ans, r-l)
        }
    }

    return ans
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
function maxFreeTime(eventTime: number, startTime: number[], endTime: number[]): number {
    const n = startTime.length;
    const pre: number[] = Array(n).fill(0);
    const suf: number[] = Array(n).fill(0);

    pre[0] = startTime[0];
    suf[n - 1] = eventTime - endTime[n - 1];

    for (let i = 1; i < n; i++) {
        pre[i] = Math.max(pre[i - 1], startTime[i] - endTime[i - 1]);
    }

    for (let i = n - 2; i >= 0; i--) {
        suf[i] = Math.max(suf[i + 1], startTime[i + 1] - endTime[i]);
    }

    let ans = 0;
    for (let i = 0; i < n; i++) {
        const l = i === 0 ? 0 : endTime[i - 1];
        const r = i === n - 1 ? eventTime : startTime[i + 1];
        const w = endTime[i] - startTime[i];

        ans = Math.max(ans, r - l - w);

        if (i > 0 && pre[i - 1] >= w) {
            ans = Math.max(ans, r - l);
        } else if (i + 1 < n && suf[i + 1] >= w) {
            ans = Math.max(ans, r - l);
        }
    }

    return ans;
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
impl Solution {
    pub fn max_free_time(event_time: i32, start_time: Vec<i32>, end_time: Vec<i32>) -> i32 {
        let n = start_time.len();
        let mut pre = vec![0; n];
        let mut suf = vec![0; n];

        pre[0] = start_time[0];
        suf[n - 1] = event_time - end_time[n - 1];

        for i in 1..n {
            pre[i] = pre[i - 1].max(start_time[i] - end_time[i - 1]);
        }

        for i in (0..n - 1).rev() {
            suf[i] = suf[i + 1].max(start_time[i + 1] - end_time[i]);
        }

        let mut ans = 0;
        for i in 0..n {
            let l = if i == 0 { 0 } else { end_time[i - 1] };
            let r = if i == n - 1 { event_time } else { start_time[i + 1] };
            let w = end_time[i] - start_time[i];
            ans = ans.max(r - l - w);

            if i > 0 && pre[i - 1] >= w {
                ans = ans.max(r - l);
            } else if i + 1 < n && suf[i + 1] >= w {
                ans = ans.max(r - l);
            }
        }

        ans
    }
}

Comments