3400. Maximum Number of Matching Indices After Right Shifts π
Description
You are given two integer arrays, nums1 and nums2, of the same length.
An index i is considered matching if nums1[i] == nums2[i].
Return the maximum number of matching indices after performing any number of right shifts on nums1.
A right shift is defined as shifting the element at index i to index (i + 1) % n, for all indices.
Example 1:
Input: nums1 = [3,1,2,3,1,2], nums2 = [1,2,3,1,2,3]
Output: 6
Explanation:
If we right shift nums1 2 times, it becomes [1, 2, 3, 1, 2, 3]. Every index matches, so the output is 6.
Example 2:
Input: nums1 = [1,4,2,5,3,1], nums2 = [2,3,1,2,4,6]
Output: 3
Explanation:
If we right shift nums1 3 times, it becomes [5, 3, 1, 1, 4, 2]. Indices 1, 2, and 4 match, so the output is 3.
Constraints:
nums1.length == nums2.length1 <= nums1.length, nums2.length <= 30001 <= nums1[i], nums2[i] <= 109
Solutions
Solution 1: Enumeration
We can enumerate the number of right shifts \(k\), where \(0 \leq k < n\). For each \(k\), we can calculate the number of matching indices between the array \(\textit{nums1}\) after right shifting \(k\) times and \(\textit{nums2}\). The maximum value is taken as the answer.
The time complexity is \(O(n^2)\), where \(n\) is the length of the array \(\textit{nums1}\). The space complexity is \(O(1)\).
1 2 3 4 5 6 7 8 | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | |
1 2 3 4 5 6 7 8 9 10 11 12 13 | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | |