Skip to content

3000. Maximum Area of Longest Diagonal Rectangle

Description

You are given a 2D 0-indexed integer array dimensions.

For all indices i, 0 <= i < dimensions.length, dimensions[i][0] represents the length and dimensions[i][1] represents the width of the rectangle i.

Return the area of the rectangle having the longest diagonal. If there are multiple rectangles with the longest diagonal, return the area of the rectangle having the maximum area.

 

Example 1:

Input: dimensions = [[9,3],[8,6]]
Output: 48
Explanation: 
For index = 0, length = 9 and width = 3. Diagonal length = sqrt(9 * 9 + 3 * 3) = sqrt(90) ≈ 9.487.
For index = 1, length = 8 and width = 6. Diagonal length = sqrt(8 * 8 + 6 * 6) = sqrt(100) = 10.
So, the rectangle at index 1 has a greater diagonal length therefore we return area = 8 * 6 = 48.

Example 2:

Input: dimensions = [[3,4],[4,3]]
Output: 12
Explanation: Length of diagonal is the same for both which is 5, so maximum area = 12.

 

Constraints:

  • 1 <= dimensions.length <= 100
  • dimensions[i].length == 2
  • 1 <= dimensions[i][0], dimensions[i][1] <= 100

Solutions

Solution 1: Mathematics

According to the Pythagorean theorem, the square of the diagonal of a rectangle is \(l^2 + w^2\), where \(l\) and \(w\) are the length and width of the rectangle, respectively.

We can iterate through all the rectangles, calculate the square of their diagonal lengths, and keep track of the maximum diagonal length and the corresponding area.

After the iteration, we return the recorded maximum area.

The time complexity is \(O(n)\), where \(n\) is the number of rectangles. The space complexity is \(O(1)\).

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
class Solution:
    def areaOfMaxDiagonal(self, dimensions: List[List[int]]) -> int:
        ans = mx = 0
        for l, w in dimensions:
            t = l**2 + w**2
            if mx < t:
                mx = t
                ans = l * w
            elif mx == t:
                ans = max(ans, l * w)
        return ans
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
class Solution {
    public int areaOfMaxDiagonal(int[][] dimensions) {
        int ans = 0, mx = 0;
        for (var d : dimensions) {
            int l = d[0], w = d[1];
            int t = l * l + w * w;
            if (mx < t) {
                mx = t;
                ans = l * w;
            } else if (mx == t) {
                ans = Math.max(ans, l * w);
            }
        }
        return ans;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
class Solution {
public:
    int areaOfMaxDiagonal(vector<vector<int>>& dimensions) {
        int ans = 0, mx = 0;
        for (auto& d : dimensions) {
            int l = d[0], w = d[1];
            int t = l * l + w * w;
            if (mx < t) {
                mx = t;
                ans = l * w;
            } else if (mx == t) {
                ans = max(ans, l * w);
            }
        }
        return ans;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
func areaOfMaxDiagonal(dimensions [][]int) (ans int) {
    mx := 0
    for _, d := range dimensions {
        l, w := d[0], d[1]
        t := l*l + w*w
        if mx < t {
            mx = t
            ans = l * w
        } else if mx == t {
            ans = max(ans, l*w)
        }
    }
    return
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
function areaOfMaxDiagonal(dimensions: number[][]): number {
    let [ans, mx] = [0, 0];
    for (const [l, w] of dimensions) {
        const t = l * l + w * w;
        if (mx < t) {
            mx = t;
            ans = l * w;
        } else if (mx === t) {
            ans = Math.max(ans, l * w);
        }
    }
    return ans;
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
impl Solution {
    pub fn area_of_max_diagonal(dimensions: Vec<Vec<i32>>) -> i32 {
        let mut ans = 0;
        let mut mx = 0;
        for d in dimensions {
            let l = d[0];
            let w = d[1];
            let t = l * l + w * w;
            if mx < t {
                mx = t;
                ans = l * w;
            } else if mx == t {
                ans = ans.max(l * w);
            }
        }
        ans
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
public class Solution {
    public int AreaOfMaxDiagonal(int[][] dimensions) {
        int ans = 0, mx = 0;
        foreach (var d in dimensions) {
            int l = d[0], w = d[1];
            int t = l * l + w * w;
            if (mx < t) {
                mx = t;
                ans = l * w;
            } else if (mx == t) {
                ans = Math.Max(ans, l * w);
            }
        }
        return ans;
    }
}

Comments