1909. Remove One Element to Make the Array Strictly Increasing
Description
Given a 0-indexed integer array nums, return true if it can be made strictly increasing after removing exactly one element, or false otherwise. If the array is already strictly increasing, return true.
The array nums is strictly increasing if nums[i - 1] < nums[i] for each index (1 <= i < nums.length).
Example 1:
Input: nums = [1,2,10,5,7] Output: true Explanation: By removing 10 at index 2 from nums, it becomes [1,2,5,7]. [1,2,5,7] is strictly increasing, so return true.
Example 2:
Input: nums = [2,3,1,2] Output: false Explanation: [3,1,2] is the result of removing the element at index 0. [2,1,2] is the result of removing the element at index 1. [2,3,2] is the result of removing the element at index 2. [2,3,1] is the result of removing the element at index 3. No resulting array is strictly increasing, so return false.
Example 3:
Input: nums = [1,1,1] Output: false Explanation: The result of removing any element is [1,1]. [1,1] is not strictly increasing, so return false.
Constraints:
2 <= nums.length <= 10001 <= nums[i] <= 1000
Solutions
Solution 1: Traversal
We can traverse the array to find the first position \(i\) where \(\textit{nums}[i] < \textit{nums}[i+1]\) is not satisfied. Then, we check if the array is strictly increasing after removing either \(i\) or \(i+1\). If it is, we return \(\textit{true}\); otherwise, we return \(\textit{false}\).
The time complexity is \(O(n)\), where \(n\) is the length of the array \(\textit{nums}\). The space complexity is \(O(1)\).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | |