Array Matrix Prefix Sum
Description A k x k magic square is a k x k grid filled with integers such that every row sum, every column sum, and both diagonal sums are all equal . The integers in the magic square do not have to be distinct . Every 1 x 1 grid is trivially a magic square .
Given an m x n integer grid, return the size (i.e., the side length k) of the largest magic square that can be found within this grid .
Β
Example 1:
Input: grid = [[7,1,4,5,6],[2,5,1,6,4],[1,5,4,3,2],[1,2,7,3,4]]
Output: 3
Explanation: The largest magic square has a size of 3.
Every row sum, column sum, and diagonal sum of this magic square is equal to 12.
- Row sums: 5+1+6 = 5+4+3 = 2+7+3 = 12
- Column sums: 5+5+2 = 1+4+7 = 6+3+3 = 12
- Diagonal sums: 5+4+3 = 6+4+2 = 12
Example 2:
Input: grid = [[5,1,3,1],[9,3,3,1],[1,3,3,8]]
Output: 2
Β
Constraints:
m == grid.length n == grid[i].length 1 <= m, n <= 50 1 <= grid[i][j] <= 106 Solutions Solution 1: Prefix Sum + Enumeration We define \(\text{rowsum}[i][j]\) as the sum of elements in the \(i\) -th row up to the \(j\) -th column of the matrix, and \(\text{colsum}[i][j]\) as the sum of elements in the \(j\) -th column up to the \(i\) -th row. Thus, for any submatrix from \((x_1, y_1)\) to \((x_2, y_2)\) , the sum of its \(i\) -th row can be expressed as \(\text{rowsum}[i+1][y_2+1] - \text{rowsum}[i+1][y_1]\) , and the sum of its \(j\) -th column can be expressed as \(\text{colsum}[x_2+1][j+1] - \text{colsum}[x_1][j+1]\) .
We enumerate all possible submatrices and check if they are magic squares. For each submatrix, we calculate the sum of each row, each column, and both diagonals to determine if they are all equal.
The time complexity is \(O(m \times n \times \min(m, n)^2)\) , and the space complexity is \(O(m \times n)\) .
Python3 Java C++ Go TypeScript
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45 class Solution :
def largestMagicSquare ( self , grid : List [ List [ int ]]) -> int :
m , n = len ( grid ), len ( grid [ 0 ])
rowsum = [[ 0 ] * ( n + 1 ) for _ in range ( m + 1 )]
colsum = [[ 0 ] * ( n + 1 ) for _ in range ( m + 1 )]
for i in range ( 1 , m + 1 ):
for j in range ( 1 , n + 1 ):
rowsum [ i ][ j ] = rowsum [ i ][ j - 1 ] + grid [ i - 1 ][ j - 1 ]
colsum [ i ][ j ] = colsum [ i - 1 ][ j ] + grid [ i - 1 ][ j - 1 ]
def check ( x1 , y1 , x2 , y2 ):
val = rowsum [ x1 + 1 ][ y2 + 1 ] - rowsum [ x1 + 1 ][ y1 ]
for i in range ( x1 + 1 , x2 + 1 ):
if rowsum [ i + 1 ][ y2 + 1 ] - rowsum [ i + 1 ][ y1 ] != val :
return False
for j in range ( y1 , y2 + 1 ):
if colsum [ x2 + 1 ][ j + 1 ] - colsum [ x1 ][ j + 1 ] != val :
return False
s , i , j = 0 , x1 , y1
while i <= x2 :
s += grid [ i ][ j ]
i += 1
j += 1
if s != val :
return False
s , i , j = 0 , x1 , y2
while i <= x2 :
s += grid [ i ][ j ]
i += 1
j -= 1
if s != val :
return False
return True
for k in range ( min ( m , n ), 1 , - 1 ):
i = 0
while i + k - 1 < m :
j = 0
while j + k - 1 < n :
i2 , j2 = i + k - 1 , j + k - 1
if check ( i , j , i2 , j2 ):
return k
j += 1
i += 1
return 1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56 class Solution {
private int [][] rowsum ;
private int [][] colsum ;
public int largestMagicSquare ( int [][] grid ) {
int m = grid . length , n = grid [ 0 ] . length ;
rowsum = new int [ m + 1 ][ n + 1 ] ;
colsum = new int [ m + 1 ][ n + 1 ] ;
for ( int i = 1 ; i <= m ; ++ i ) {
for ( int j = 1 ; j <= n ; ++ j ) {
rowsum [ i ][ j ] = rowsum [ i ][ j - 1 ] + grid [ i - 1 ][ j - 1 ] ;
colsum [ i ][ j ] = colsum [ i - 1 ][ j ] + grid [ i - 1 ][ j - 1 ] ;
}
}
for ( int k = Math . min ( m , n ); k > 1 ; -- k ) {
for ( int i = 0 ; i + k - 1 < m ; ++ i ) {
for ( int j = 0 ; j + k - 1 < n ; ++ j ) {
int i2 = i + k - 1 , j2 = j + k - 1 ;
if ( check ( grid , i , j , i2 , j2 )) {
return k ;
}
}
}
}
return 1 ;
}
private boolean check ( int [][] grid , int x1 , int y1 , int x2 , int y2 ) {
int val = rowsum [ x1 + 1 ][ y2 + 1 ] - rowsum [ x1 + 1 ][ y1 ] ;
for ( int i = x1 + 1 ; i <= x2 ; ++ i ) {
if ( rowsum [ i + 1 ][ y2 + 1 ] - rowsum [ i + 1 ][ y1 ] != val ) {
return false ;
}
}
for ( int j = y1 ; j <= y2 ; ++ j ) {
if ( colsum [ x2 + 1 ][ j + 1 ] - colsum [ x1 ][ j + 1 ] != val ) {
return false ;
}
}
int s = 0 ;
for ( int i = x1 , j = y1 ; i <= x2 ; ++ i , ++ j ) {
s += grid [ i ][ j ] ;
}
if ( s != val ) {
return false ;
}
s = 0 ;
for ( int i = x1 , j = y2 ; i <= x2 ; ++ i , -- j ) {
s += grid [ i ][ j ] ;
}
if ( s != val ) {
return false ;
}
return true ;
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57 class Solution {
public :
vector < vector < int >> rowsum ;
vector < vector < int >> colsum ;
int largestMagicSquare ( vector < vector < int >>& grid ) {
int m = grid . size (), n = grid [ 0 ]. size ();
rowsum . assign ( m + 1 , vector < int > ( n + 1 , 0 ));
colsum . assign ( m + 1 , vector < int > ( n + 1 , 0 ));
for ( int i = 1 ; i <= m ; ++ i ) {
for ( int j = 1 ; j <= n ; ++ j ) {
rowsum [ i ][ j ] = rowsum [ i ][ j - 1 ] + grid [ i - 1 ][ j - 1 ];
colsum [ i ][ j ] = colsum [ i - 1 ][ j ] + grid [ i - 1 ][ j - 1 ];
}
}
for ( int k = min ( m , n ); k > 1 ; -- k ) {
for ( int i = 0 ; i + k - 1 < m ; ++ i ) {
for ( int j = 0 ; j + k - 1 < n ; ++ j ) {
int i2 = i + k - 1 , j2 = j + k - 1 ;
if ( check ( grid , i , j , i2 , j2 )) {
return k ;
}
}
}
}
return 1 ;
}
bool check ( vector < vector < int >>& grid , int x1 , int y1 , int x2 , int y2 ) {
int val = rowsum [ x1 + 1 ][ y2 + 1 ] - rowsum [ x1 + 1 ][ y1 ];
for ( int i = x1 + 1 ; i <= x2 ; ++ i ) {
if ( rowsum [ i + 1 ][ y2 + 1 ] - rowsum [ i + 1 ][ y1 ] != val ) {
return false ;
}
}
for ( int j = y1 ; j <= y2 ; ++ j ) {
if ( colsum [ x2 + 1 ][ j + 1 ] - colsum [ x1 ][ j + 1 ] != val ) {
return false ;
}
}
int s = 0 ;
for ( int i = x1 , j = y1 ; i <= x2 ; ++ i , ++ j ) {
s += grid [ i ][ j ];
}
if ( s != val ) {
return false ;
}
s = 0 ;
for ( int i = x1 , j = y2 ; i <= x2 ; ++ i , -- j ) {
s += grid [ i ][ j ];
}
if ( s != val ) {
return false ;
}
return true ;
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55 func largestMagicSquare ( grid [][] int ) int {
m , n := len ( grid ), len ( grid [ 0 ])
rowsum := make ([][] int , m + 1 )
colsum := make ([][] int , m + 1 )
for i := 0 ; i <= m ; i ++ {
rowsum [ i ] = make ([] int , n + 1 )
colsum [ i ] = make ([] int , n + 1 )
}
for i := 1 ; i < m + 1 ; i ++ {
for j := 1 ; j < n + 1 ; j ++ {
rowsum [ i ][ j ] = rowsum [ i ][ j - 1 ] + grid [ i - 1 ][ j - 1 ]
colsum [ i ][ j ] = colsum [ i - 1 ][ j ] + grid [ i - 1 ][ j - 1 ]
}
}
for k := min ( m , n ); k > 1 ; k -- {
for i := 0 ; i + k - 1 < m ; i ++ {
for j := 0 ; j + k - 1 < n ; j ++ {
i2 , j2 := i + k - 1 , j + k - 1
if check ( grid , rowsum , colsum , i , j , i2 , j2 ) {
return k
}
}
}
}
return 1
}
func check ( grid , rowsum , colsum [][] int , x1 , y1 , x2 , y2 int ) bool {
val := rowsum [ x1 + 1 ][ y2 + 1 ] - rowsum [ x1 + 1 ][ y1 ]
for i := x1 + 1 ; i < x2 + 1 ; i ++ {
if rowsum [ i + 1 ][ y2 + 1 ] - rowsum [ i + 1 ][ y1 ] != val {
return false
}
}
for j := y1 ; j < y2 + 1 ; j ++ {
if colsum [ x2 + 1 ][ j + 1 ] - colsum [ x1 ][ j + 1 ] != val {
return false
}
}
s := 0
for i , j := x1 , y1 ; i <= x2 ; i , j = i + 1 , j + 1 {
s += grid [ i ][ j ]
}
if s != val {
return false
}
s = 0
for i , j := x1 , y2 ; i <= x2 ; i , j = i + 1 , j - 1 {
s += grid [ i ][ j ]
}
if s != val {
return false
}
return true
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54 function largestMagicSquare ( grid : number [][]) : number {
const [ m , n ] = [ grid . length , grid [ 0 ]. length ];
const rowsum : number [][] = Array . from ({ length : m + 1 }, () => Array ( n + 1 ). fill ( 0 ));
const colsum : number [][] = Array . from ({ length : m + 1 }, () => Array ( n + 1 ). fill ( 0 ));
for ( let i = 1 ; i <= m ; ++ i ) {
for ( let j = 1 ; j <= n ; ++ j ) {
rowsum [ i ][ j ] = rowsum [ i ][ j - 1 ] + grid [ i - 1 ][ j - 1 ];
colsum [ i ][ j ] = colsum [ i - 1 ][ j ] + grid [ i - 1 ][ j - 1 ];
}
}
const check = ( x1 : number , y1 : number , x2 : number , y2 : number ) : boolean => {
const val = rowsum [ x1 + 1 ][ y2 + 1 ] - rowsum [ x1 + 1 ][ y1 ];
for ( let i = x1 + 1 ; i <= x2 ; ++ i ) {
if ( rowsum [ i + 1 ][ y2 + 1 ] - rowsum [ i + 1 ][ y1 ] !== val ) {
return false ;
}
}
for ( let j = y1 ; j <= y2 ; ++ j ) {
if ( colsum [ x2 + 1 ][ j + 1 ] - colsum [ x1 ][ j + 1 ] !== val ) {
return false ;
}
}
let s = 0 ;
for ( let i = x1 , j = y1 ; i <= x2 ; ++ i , ++ j ) {
s += grid [ i ][ j ];
}
if ( s !== val ) {
return false ;
}
s = 0 ;
for ( let i = x1 , j = y2 ; i <= x2 ; ++ i , -- j ) {
s += grid [ i ][ j ];
}
if ( s !== val ) {
return false ;
}
return true ;
};
for ( let k = Math . min ( m , n ); k > 1 ; -- k ) {
for ( let i = 0 ; i + k - 1 < m ; ++ i ) {
for ( let j = 0 ; j + k - 1 < n ; ++ j ) {
const i2 = i + k - 1 ,
j2 = j + k - 1 ;
if ( check ( i , j , i2 , j2 )) {
return k ;
}
}
}
}
return 1 ;
}