Skip to content

1442. Count Triplets That Can Form Two Arrays of Equal XOR

Description

Given an array of integers arr.

We want to select three indices i, j and k where (0 <= i < j <= k < arr.length).

Let's define a and b as follows:

  • a = arr[i] ^ arr[i + 1] ^ ... ^ arr[j - 1]
  • b = arr[j] ^ arr[j + 1] ^ ... ^ arr[k]

Note that ^ denotes the bitwise-xor operation.

Return the number of triplets (i, j and k) Where a == b.

 

Example 1:

Input: arr = [2,3,1,6,7]
Output: 4
Explanation: The triplets are (0,1,2), (0,2,2), (2,3,4) and (2,4,4)

Example 2:

Input: arr = [1,1,1,1,1]
Output: 10

 

Constraints:

  • 1 <= arr.length <= 300
  • 1 <= arr[i] <= 108

Solutions

Solution 1: Enumeration

According to the problem description, to find triplets \((i, j, k)\) that satisfy \(a = b\), which means \(s = a \oplus b = 0\), we only need to enumerate the left endpoint \(i\), and then calculate the prefix XOR sum \(s\) of the interval \([i, k]\) with \(k\) as the right endpoint. If \(s = 0\), then for any \(j \in [i + 1, k]\), the condition \(a = b\) is satisfied, meaning \((i, j, k)\) is a valid triplet. There are \(k - i\) such triplets, which we can add to our answer.

After the enumeration is complete, we return the answer.

The time complexity is \(O(n^2)\), where \(n\) is the length of the array \(\textit{arr}\). The space complexity is \(O(1)\).

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
class Solution:
    def countTriplets(self, arr: List[int]) -> int:
        ans, n = 0, len(arr)
        for i, x in enumerate(arr):
            s = x
            for k in range(i + 1, n):
                s ^= arr[k]
                if s == 0:
                    ans += k - i
        return ans
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
class Solution {
    public int countTriplets(int[] arr) {
        int ans = 0, n = arr.length;
        for (int i = 0; i < n; ++i) {
            int s = arr[i];
            for (int k = i + 1; k < n; ++k) {
                s ^= arr[k];
                if (s == 0) {
                    ans += k - i;
                }
            }
        }
        return ans;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
class Solution {
public:
    int countTriplets(vector<int>& arr) {
        int ans = 0, n = arr.size();
        for (int i = 0; i < n; ++i) {
            int s = arr[i];
            for (int k = i + 1; k < n; ++k) {
                s ^= arr[k];
                if (s == 0) {
                    ans += k - i;
                }
            }
        }
        return ans;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
func countTriplets(arr []int) (ans int) {
    for i, x := range arr {
        s := x
        for k := i + 1; k < len(arr); k++ {
            s ^= arr[k]
            if s == 0 {
                ans += k - i
            }
        }
    }
    return
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
function countTriplets(arr: number[]): number {
    const n = arr.length;
    let ans = 0;
    for (let i = 0; i < n; ++i) {
        let s = arr[i];
        for (let k = i + 1; k < n; ++k) {
            s ^= arr[k];
            if (s === 0) {
                ans += k - i;
            }
        }
    }
    return ans;
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
impl Solution {
    pub fn count_triplets(arr: Vec<i32>) -> i32 {
        let mut ans = 0;
        let n = arr.len();

        for i in 0..n {
            let mut s = arr[i];
            for k in (i + 1)..n {
                s ^= arr[k];
                if s == 0 {
                    ans += (k - i) as i32;
                }
            }
        }

        ans
    }
}

Comments