Skip to content

1277. Count Square Submatrices with All Ones

Description

Given a m * n matrix of ones and zeros, return how many square submatrices have all ones.

 

Example 1:

Input: matrix =
[
  [0,1,1,1],
  [1,1,1,1],
  [0,1,1,1]
]
Output: 15
Explanation: 
There are 10 squares of side 1.
There are 4 squares of side 2.
There is  1 square of side 3.
Total number of squares = 10 + 4 + 1 = 15.

Example 2:

Input: matrix = 
[
  [1,0,1],
  [1,1,0],
  [1,1,0]
]
Output: 7
Explanation: 
There are 6 squares of side 1.  
There is 1 square of side 2. 
Total number of squares = 6 + 1 = 7.

 

Constraints:

  • 1 <= arr.length <= 300
  • 1 <= arr[0].length <= 300
  • 0 <= arr[i][j] <= 1

Solutions

Solution 1: Dynamic Programming

We define \(f[i][j]\) as the side length of the square submatrix with \((i,j)\) as the bottom-right corner. Initially \(f[i][j] = 0\), and the answer is \(\sum_{i,j} f[i][j]\).

Consider how to perform state transition for \(f[i][j]\).

  • When \(\text{matrix}[i][j] = 0\), we have \(f[i][j] = 0\).
  • When \(\text{matrix}[i][j] = 1\), the value of state \(f[i][j]\) depends on the values of the three positions above, left, and top-left:
    • If \(i = 0\) or \(j = 0\), then \(f[i][j] = 1\).
    • Otherwise \(f[i][j] = \min(f[i-1][j-1], f[i-1][j], f[i][j-1]) + 1\).

The answer is \(\sum_{i,j} f[i][j]\).

Time complexity \(O(m \times n)\), space complexity \(O(m \times n)\). Where \(m\) and \(n\) are the number of rows and columns of the matrix respectively.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
class Solution:
    def countSquares(self, matrix: List[List[int]]) -> int:
        m, n = len(matrix), len(matrix[0])
        f = [[0] * n for _ in range(m)]
        ans = 0
        for i, row in enumerate(matrix):
            for j, v in enumerate(row):
                if v == 0:
                    continue
                if i == 0 or j == 0:
                    f[i][j] = 1
                else:
                    f[i][j] = min(f[i - 1][j - 1], f[i - 1][j], f[i][j - 1]) + 1
                ans += f[i][j]
        return ans
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
class Solution {
    public int countSquares(int[][] matrix) {
        int m = matrix.length;
        int n = matrix[0].length;
        int[][] f = new int[m][n];
        int ans = 0;
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                if (matrix[i][j] == 0) {
                    continue;
                }
                if (i == 0 || j == 0) {
                    f[i][j] = 1;
                } else {
                    f[i][j] = Math.min(f[i - 1][j - 1], Math.min(f[i - 1][j], f[i][j - 1])) + 1;
                }
                ans += f[i][j];
            }
        }
        return ans;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
class Solution {
public:
    int countSquares(vector<vector<int>>& matrix) {
        int m = matrix.size(), n = matrix[0].size();
        int ans = 0;
        vector<vector<int>> f(m, vector<int>(n));
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                if (matrix[i][j] == 0) {
                    continue;
                }
                if (i == 0 || j == 0) {
                    f[i][j] = 1;
                } else {
                    f[i][j] = min(f[i - 1][j - 1], min(f[i - 1][j], f[i][j - 1])) + 1;
                }
                ans += f[i][j];
            }
        }
        return ans;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
func countSquares(matrix [][]int) int {
    m, n, ans := len(matrix), len(matrix[0]), 0
    f := make([][]int, m)
    for i := range f {
        f[i] = make([]int, n)
    }
    for i, row := range matrix {
        for j, v := range row {
            if v == 0 {
                continue
            }
            if i == 0 || j == 0 {
                f[i][j] = 1
            } else {
                f[i][j] = min(f[i-1][j-1], min(f[i-1][j], f[i][j-1])) + 1
            }
            ans += f[i][j]
        }
    }
    return ans
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
function countSquares(matrix: number[][]): number {
    const m = matrix.length;
    const n = matrix[0].length;
    const f: number[][] = Array.from({ length: m }, () => Array(n).fill(0));
    let ans = 0;

    for (let i = 0; i < m; i++) {
        for (let j = 0; j < n; j++) {
            if (matrix[i][j] === 0) {
                continue;
            }
            if (i === 0 || j === 0) {
                f[i][j] = 1;
            } else {
                f[i][j] = Math.min(f[i - 1][j - 1], Math.min(f[i - 1][j], f[i][j - 1])) + 1;
            }
            ans += f[i][j];
        }
    }

    return ans;
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
impl Solution {
    pub fn count_squares(matrix: Vec<Vec<i32>>) -> i32 {
        let m = matrix.len();
        let n = matrix[0].len();
        let mut f = vec![vec![0; n]; m];
        let mut ans = 0;

        for i in 0..m {
            for j in 0..n {
                if matrix[i][j] == 0 {
                    continue;
                }
                if i == 0 || j == 0 {
                    f[i][j] = 1;
                } else {
                    f[i][j] = std::cmp::min(f[i - 1][j - 1], std::cmp::min(f[i - 1][j], f[i][j - 1])) + 1;
                }
                ans += f[i][j];
            }
        }

        ans
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
/**
 * @param {number[][]} matrix
 * @return {number}
 */
var countSquares = function (matrix) {
    const m = matrix.length;
    const n = matrix[0].length;
    const f = Array.from({ length: m }, () => Array(n).fill(0));
    let ans = 0;

    for (let i = 0; i < m; i++) {
        for (let j = 0; j < n; j++) {
            if (matrix[i][j] === 0) {
                continue;
            }
            if (i === 0 || j === 0) {
                f[i][j] = 1;
            } else {
                f[i][j] = Math.min(f[i - 1][j - 1], Math.min(f[i - 1][j], f[i][j - 1])) + 1;
            }
            ans += f[i][j];
        }
    }

    return ans;
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
public class Solution {
    public int CountSquares(int[][] matrix) {
        int m = matrix.Length;
        int n = matrix[0].Length;
        int[,] f = new int[m, n];
        int ans = 0;

        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                if (matrix[i][j] == 0) {
                    continue;
                }
                if (i == 0 || j == 0) {
                    f[i, j] = 1;
                } else {
                    f[i, j] = Math.Min(f[i - 1, j - 1], Math.Min(f[i - 1, j], f[i, j - 1])) + 1;
                }
                ans += f[i, j];
            }
        }

        return ans;
    }
}

Comments