1134. Armstrong Number π
Description
Given an integer n, return true if and only if it is an Armstrong number.
The k-digit number n is an Armstrong number if and only if the kth power of each digit sums to n.
Example 1:
Input: n = 153 Output: true Explanation: 153 is a 3-digit number, and 153 = 13 + 53 + 33.
Example 2:
Input: n = 123 Output: false Explanation: 123 is a 3-digit number, and 123 != 13 + 23 + 33 = 36.
Constraints:
1 <= n <= 108
Solutions
Solution 1: Simulation
We can first calculate the number of digits \(k\), then calculate the sum \(s\) of the \(k\)th power of each digit, and finally check whether \(s\) equals \(n\).
The time complexity is \(O(\log n)\), and the space complexity is \(O(\log n)\). Here, \(n\) is the given number.
1 2 3 4 5 6 7 8 | |
1 2 3 4 5 6 7 8 9 10 | |
1 2 3 4 5 6 7 8 9 10 11 | |
1 2 3 4 5 6 7 8 9 10 11 | |
1 2 3 4 5 6 7 8 | |
1 2 3 4 5 6 7 8 9 10 11 12 | |