题目描述
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。
问总共有多少条不同的路径?
 
示例 1:

输入:m = 3, n = 7
输出:28
示例 2:
输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右
3. 向下 -> 向右 -> 向下
示例 3:
输入:m = 7, n = 3
输出:28
示例 4:
输入:m = 3, n = 3
输出:6
 
提示:
    1 <= m, n <= 100 
    - 题目数据保证答案小于等于 
2 * 109 
 
注意:本题与主站 62 题相同: https://leetcode.cn/problems/unique-paths/
解法
方法一:动态规划
我们定义 \(f[i][j]\) 表示从左上角走到 \((i, j)\) 的路径数量,初始时 \(f[0][0] = 1\),答案为 \(f[m - 1][n - 1]\)。
考虑 \(f[i][j]\):
- 如果 \(i \gt 0\),那么 \(f[i][j]\) 可以从 \(f[i - 1][j]\) 走一步到达,因此 \(f[i][j] = f[i][j] + f[i - 1][j]\);
 
- 如果 \(j \gt 0\),那么 \(f[i][j]\) 可以从 \(f[i][j - 1]\) 走一步到达,因此 \(f[i][j] = f[i][j] + f[i][j - 1]\)。
 
因此,我们有如下的状态转移方程:
\[
f[i][j] = \begin{cases}
1 & i = 0, j = 0 \\
f[i - 1][j] + f[i][j - 1] & \textit{otherwise}
\end{cases}
\]
最终的答案即为 \(f[m - 1][n - 1]\)。
时间复杂度 \(O(m \times n)\),空间复杂度 \(O(m \times n)\)。其中 \(m\) 和 \(n\) 分别是网格的行数和列数。
我们注意到 \(f[i][j]\) 仅与 \(f[i - 1][j]\) 和 \(f[i][j - 1]\) 有关,因此我们优化掉第一维空间,仅保留第二维空间,得到时间复杂度 \(O(m \times n)\),空间复杂度 \(O(n)\) 的实现。
 | class Solution:
    def uniquePaths(self, m: int, n: int) -> int:
        f = [[0] * n for _ in range(m)]
        f[0][0] = 1
        for i in range(m):
            for j in range(n):
                if i:
                    f[i][j] += f[i - 1][j]
                if j:
                    f[i][j] += f[i][j - 1]
        return f[-1][-1]
  | 
 
 
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17  | class Solution {
    public int uniquePaths(int m, int n) {
        var f = new int[m][n];
        f[0][0] = 1;
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                if (i > 0) {
                    f[i][j] += f[i - 1][j];
                }
                if (j > 0) {
                    f[i][j] += f[i][j - 1];
                }
            }
        }
        return f[m - 1][n - 1];
    }
}
  | 
 
 
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18  | class Solution {
public:
    int uniquePaths(int m, int n) {
        vector<vector<int>> f(m, vector<int>(n));
        f[0][0] = 1;
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                if (i) {
                    f[i][j] += f[i - 1][j];
                }
                if (j) {
                    f[i][j] += f[i][j - 1];
                }
            }
        }
        return f[m - 1][n - 1];
    }
};
  | 
 
 
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18  | func uniquePaths(m int, n int) int {
    f := make([][]int, m)
    for i := range f {
        f[i] = make([]int, n)
    }
    f[0][0] = 1
    for i := 0; i < m; i++ {
        for j := 0; j < n; j++ {
            if i > 0 {
                f[i][j] += f[i-1][j]
            }
            if j > 0 {
                f[i][j] += f[i][j-1]
            }
        }
    }
    return f[m-1][n-1]
}
  | 
 
 
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17  | function uniquePaths(m: number, n: number): number {
    const f: number[][] = Array(m)
        .fill(0)
        .map(() => Array(n).fill(0));
    f[0][0] = 1;
    for (let i = 0; i < m; ++i) {
        for (let j = 0; j < n; ++j) {
            if (i > 0) {
                f[i][j] += f[i - 1][j];
            }
            if (j > 0) {
                f[i][j] += f[i][j - 1];
            }
        }
    }
    return f[m - 1][n - 1];
}
  | 
 
 
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12  | impl Solution {
    pub fn unique_paths(m: i32, n: i32) -> i32 {
        let (m, n) = (m as usize, n as usize);
        let mut f = vec![1; n];
        for i in 1..m {
            for j in 1..n {
                f[j] += f[j - 1];
            }
        }
        f[n - 1]
    }
}
  | 
 
 
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22  | /**
 * @param {number} m
 * @param {number} n
 * @return {number}
 */
var uniquePaths = function (m, n) {
    const f = Array(m)
        .fill(0)
        .map(() => Array(n).fill(0));
    f[0][0] = 1;
    for (let i = 0; i < m; ++i) {
        for (let j = 0; j < n; ++j) {
            if (i > 0) {
                f[i][j] += f[i - 1][j];
            }
            if (j > 0) {
                f[i][j] += f[i][j - 1];
            }
        }
    }
    return f[m - 1][n - 1];
};
  | 
 
 
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19  | class Solution {
    func uniquePaths(_ m: Int, _ n: Int) -> Int {
        var dp = Array(repeating: Array(repeating: 0, count: n), count: m)
        dp[0][0] = 1
        for i in 0..<m {
            for j in 0..<n {
                if i > 0 {
                    dp[i][j] += dp[i - 1][j]
                }
                if j > 0 {
                    dp[i][j] += dp[i][j - 1]
                }
            }
        }
        return dp[m - 1][n - 1]
    }
}
  | 
 
 
 
 
方法二
 | class Solution:
    def uniquePaths(self, m: int, n: int) -> int:
        f = [[1] * n for _ in range(m)]
        for i in range(1, m):
            for j in range(1, n):
                f[i][j] = f[i - 1][j] + f[i][j - 1]
        return f[-1][-1]
  | 
 
 
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14  | class Solution {
    public int uniquePaths(int m, int n) {
        var f = new int[m][n];
        for (var g : f) {
            Arrays.fill(g, 1);
        }
        for (int i = 1; i < m; ++i) {
            for (int j = 1; j < n; j++) {
                f[i][j] = f[i - 1][j] + f[i][j - 1];
            }
        }
        return f[m - 1][n - 1];
    }
}
  | 
 
 
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12  | class Solution {
public:
    int uniquePaths(int m, int n) {
        vector<vector<int>> f(m, vector<int>(n, 1));
        for (int i = 1; i < m; ++i) {
            for (int j = 1; j < n; ++j) {
                f[i][j] = f[i - 1][j] + f[i][j - 1];
            }
        }
        return f[m - 1][n - 1];
    }
};
  | 
 
 
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15  | func uniquePaths(m int, n int) int {
    f := make([][]int, m)
    for i := range f {
        f[i] = make([]int, n)
        for j := range f[i] {
            f[i][j] = 1
        }
    }
    for i := 1; i < m; i++ {
        for j := 1; j < n; j++ {
            f[i][j] = f[i-1][j] + f[i][j-1]
        }
    }
    return f[m-1][n-1]
}
  | 
 
 
 | function uniquePaths(m: number, n: number): number {
    const f: number[][] = Array(m)
        .fill(0)
        .map(() => Array(n).fill(1));
    for (let i = 1; i < m; ++i) {
        for (let j = 1; j < n; ++j) {
            f[i][j] = f[i - 1][j] + f[i][j - 1];
        }
    }
    return f[m - 1][n - 1];
}
  | 
 
 
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16  | /**
 * @param {number} m
 * @param {number} n
 * @return {number}
 */
var uniquePaths = function (m, n) {
    const f = Array(m)
        .fill(0)
        .map(() => Array(n).fill(1));
    for (let i = 1; i < m; ++i) {
        for (let j = 1; j < n; ++j) {
            f[i][j] = f[i - 1][j] + f[i][j - 1];
        }
    }
    return f[m - 1][n - 1];
};
  | 
 
 
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13  | class Solution {
    func uniquePaths(_ m: Int, _ n: Int) -> Int {
        var dp = Array(repeating: Array(repeating: 1, count: n), count: m)
        for i in 1..<m {
            for j in 1..<n {
                dp[i][j] = dp[i-1][j] + dp[i][j-1]
            }
        }
        return dp[m-1][n-1]
    }
}
  | 
 
 
 
 
方法三
 | class Solution:
    def uniquePaths(self, m: int, n: int) -> int:
        f = [1] * n
        for _ in range(1, m):
            for j in range(1, n):
                f[j] += f[j - 1]
        return f[-1]
  | 
 
 
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12  | class Solution {
    public int uniquePaths(int m, int n) {
        int[] f = new int[n];
        Arrays.fill(f, 1);
        for (int i = 1; i < m; ++i) {
            for (int j = 1; j < n; ++j) {
                f[j] += f[j - 1];
            }
        }
        return f[n - 1];
    }
}
  | 
 
 
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12  | class Solution {
public:
    int uniquePaths(int m, int n) {
        vector<int> f(n, 1);
        for (int i = 1; i < m; ++i) {
            for (int j = 1; j < n; ++j) {
                f[j] += f[j - 1];
            }
        }
        return f[n - 1];
    }
};
  | 
 
 
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12  | func uniquePaths(m int, n int) int {
    f := make([]int, n+1)
    for i := range f {
        f[i] = 1
    }
    for i := 1; i < m; i++ {
        for j := 1; j < n; j++ {
            f[j] += f[j-1]
        }
    }
    return f[n-1]
}
  | 
 
 
 | function uniquePaths(m: number, n: number): number {
    const f: number[] = Array(n).fill(1);
    for (let i = 1; i < m; ++i) {
        for (let j = 1; j < n; ++j) {
            f[j] += f[j - 1];
        }
    }
    return f[n - 1];
}
  | 
 
 
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14  | /**
 * @param {number} m
 * @param {number} n
 * @return {number}
 */
var uniquePaths = function (m, n) {
    const f = Array(n).fill(1);
    for (let i = 1; i < m; ++i) {
        for (let j = 1; j < n; ++j) {
            f[j] += f[j - 1];
        }
    }
    return f[n - 1];
};
  |